

Basic evaluation and comparison of circulation classifications from the COST733 database

Christoph Beck Institute for Geography University of Augsburg

christoph.beck@geo.uni-augsburg.de

Framework

Objectives

Data & Methods

Results

COSE 733

Framework

COST733 Action

Obiectives

Data & Methods

Results

Conclusions

"Harmonisation and applications of weather type classifications for European Regions"

Working Group 1 Existing methods and applications

Working Group 2 Implementation and development of weather types classification methods

Working Group 3 Comparison of selected weather type Classifications

Working Group 4 Testing methods for various applications

Framework

COST733 Action

"Harmonisation and applications of weather type classifications for European Regions"

Working Group 3

Comparison of selected weather type Classifications

→ Basic evaluation and comparison of circulation type classifications

Objectives

Data & Method

Results

ここらに 733

Framework

(According to the Memorandum of Understanding):

- find or devise intercomparison tools (for circulation type classifications)
- statistical evaluation/comparison of classifications (provided by WG2)
 - **presentation and release of results** (to other WGs and scientific community)
- recommend specifications for a new (common) method (to WG2 together with WG4)

Objectives

Data & Methods

Results

ここらと 733

Framework

Basic evaluation/comparison of classifications

Objectives

Data & Methods

Results

- estimate the performance of circulation type classifications in terms of their "discriminative power"
 - for varying climatic target variables (MSLP, Temp, Prec)
 - determine the relevance of the underlying basic methodological concepts
 - analyse the effect of varying classification "settings"

COSE 733

Framework

Basic evaluation/comparison of classifications

Objectives

Data & Methods

Results

- estimate the performance of circulation type classifications in terms of their "discriminative power"
 - for varying climatic target variables (MSLP, Temp, Prec)
 - determine the relevance of the underlying basic methodological concepts
 - analyse the effect of varying classification "settings"
- are there superior individual methods?
- are there superior methodological concepts?
- are there superior classification settings?

CIDSE 733

Framework

1) Circulation type classifications from the cost733cat 2.0 data base

~ **5000 classifications** (provided by WG2)

Objectives

Data & Methods

Results

<u>cost</u> 733

Framework

1) Circulation type classifications from the cost733cat 2.0 data base

Objectives

Data & Methods

Results

- **E000 algoritications** (provided by MC2)
- ~ 5000 classifications (provided by WG2)
 - for 12 spatial domains

COSE 733

Framework

Objectives

Data & Methods

Results

1) Circulation type classifications from the cost733cat 2.0 data base

- ~ 5000 classifications (provided by WG2)
 - for 12 spatial domains
 - using ERA40 data
- for fixed numbers of types (9, 18, 27)
- using MSLP
- for single days
 - on an annual basis

<u>COSE</u> 733

Framework

1) Circulation type classifications from the cost733cat 2.0 data base

Objectives

Data & Methods ~ 5000 classifications (provided by WG2)
~ 20 methods, from 5 basic method groups

	Method Group	Specific Method					
ds	SUB jective	Hess- Brezowsky	Peczely	Perret	Schueepp	ZAMG	
	THReshold	GWT	JCT/LWT	LIT	WLK		
5	PCA	KRZ	PCT	PTT	PXE		
	LeaDeR	ERP	KIR	LND	PTS		
sions	OPT imization	CAP	СКМ	NNW	PXK	SAN	SOM

2056 733

Framework

Objectives

Data & Methods

Results

1) Circulation type classifications from the cost733cat 2.0 data base

- ~ 5000 classifications (provided by WG2)
 - for 12 spatial domains
- using ERA40 data
- for fixed numbers of types (9, 18, 27)
- using MSLP / using additional variables
- for single days / for 4-day sequences
- on an annual basis / on a seasonal basis

COSE 733

Framework

Objectives

Data & Methods

Results

1) Circulation type classifications from the cost733cat 2.0 data base

~ 5000 classifications (provided by WG2)

enable the comparison of:

Methods

- is LUND better than KIRCHHOFER ?
- Method Groups
 is OPT better than PCA ?
- Settings
 - is MSLP + GPH 500 better than MSLP alone ?

COSE 733

Framework

2) Climatic target variable data from ERA40

(Uppala et al., 2005)

Objectives

Data & Methods

Results

- daily mean SLP (MSLP)
- daily mean 2-metre Temperature (2mT)
- daily precipitation sum (PREC)
- for the period 1957 2002

3) Evaluation criteria

ここっち 733

Framework

Ohiectives

Data & Methods

Results

- Explained Variation $EV = 1 - \frac{WSS}{TSS}$ - Pseudo-F statistic $PF = 1 - \frac{BSS/(k-1)}{WSS/(n-k)}$ - Within-type Standard Deviation $WSD = \sqrt{\frac{\sum_{k=1}^{K} (n_k - 1) \cdot SDI_k^2}{\sum_{k=1}^{K} (n_k - 1)}}$ - Pattern Correlation Ratio $PCR = \frac{PCI}{PCO}$ - (Fast)Silhouette Index $FSIL = \frac{1}{n} \sum_{i=1}^{n} \frac{fb_i - fa_i}{\max(fa_i, fb_i)}$ - Confidence Interval of the Mean $CIM = \frac{\sum_{k=1}^{K} z_{1-\alpha/2} \cdot \frac{SDI_k}{\sqrt{n_k}} \cdot n_k}{\sum_{k=1}^{K} n_k}$

SDI = standard deviation within class PCI = mean pattern correlation within classes PCO = mean pattern correlation between classes fa_i = distance between case i and its own class centroid fb_i = distance between case i and its nearest class centroid TSS = total sum of squares WSS = sum of squares within classes BSS = sum of squares between classes k = number of classes (types) n = number of cases

<u>cose</u> 733

Obiectives

Data & Methods

Results

Conclusions

4) Determination of Evaluation indices

- for gridded SLP-, Temperature- and Precipitation data
- for 12 different domains
- for individual months, seasons and the whole year
- for individual grid points / the whole gridded field
 - ~ 4000 "performance index" samples

Aggregation of evaluation indices for varying groupings of classifications (e.g. sequential classifications – non-sequential classifications)

 \rightarrow relevance of basic methodological approach / settings (e.g. effect of classifying 4-day sequences)

no of types

se 733

9

no of types

Relevance of the number of types

no of types

JSE 733

DSE 733

-ose 733

Comparison / "ranking" of individual methods 27 types, over all domains and all seasons, EV for MSLP

Framework

Comparison / "ranking" of individual methods 27 types, over all domains and all seasons, EV for 2mT

Framework

Comparison / "ranking" of individual methods 27 types, over all domains and all seasons, EV for PREC

Relevance of the basic methodological approach

Method group with highest mean EV

Conclusions SUB = Subjective methods PCA = PCA based methods OPT = Optimisation methods THR = Threshold based methods LDR = Leader based methods RAC = Random centroid methods

Framework

Relevance of the basic methodological approach

Method affiliation of best performing CTC

Conclusions SUB = Subjective methods PCA = PCA based methods OPT = Optimisation methods THR = Threshold based methods LDR = Leader based methods RAC = Random centroid methods

COSE 733

Framework

Relevance of sequence length

Sequence length of best performing CTC

Conclusions

S01 = 1-day sequence

S04 = 4-day sequence

COSE 733

Framework

Relevance of seasonality

Mean EV over all CTCs performed on an annual or seasonal basis

(27 types per year vs. 7 types per season) PRC MSLP 2mT 3 2 2 2 1 1 standar&/Zed EV dardized EV standardized EV 0 0 0. -1 -1 -2 -2 -2 -3 -3YR SE YR SE YR SE time resolution time resolution time resolution

Objectives

Data & Methods

Results

YR = annual classification

SE = seasonal classification

<u>cose</u> 733

Framework

Relevance of seasonality

Mean EV over all CTCs performed on an annual or seasonal basis

(9 types per year vs. 7 types per season) PRC MSLD 3 2 2 1 1 standardized EV standardized EV standardized EV 0 0 0 -1 -1 -1 -2 -2 -2 -3 -3 YR SE YR SE YR SE time resolution time resolution time resolution

Objectives

Data & Methods

Results

Conclusions

YR = annual classification

SE = seasonal classification

Framework

Relevance of additional input variables

Input variable(s) used by the best performing CTC

Conclusions

SP = MSLP Y5 = 500hPa vorticity K5 = 1000/500hPa thickness Z5 = 500hPa height

COSE 733

- 1) CTCs for varying spatial domains centered over Central Europe (from largest domain 6 to smallest domain -1)
- 2) Evaluation of each CTC for COST733 domain 7 ("original size" domain 0)

Only for a subsample of CTCs:

- CAP
- GWT
- LND
- SAN
- TPC

ose 733

Framework

Relevance of domain size

Domain 7, winter, 2mT 0.30 0.25 ΕV 0.20 Domain 7, winter, PREC 0.24 0.22 0.20 EV 0.18 0.16 0.14 0.12 TSSSSAISAILLL TSSSSSAISAILLL -0.0.4.0.0.1.0.4.0.0.1

Results

0.20

<u>COSE</u> 733

CH CONTRACTOR

Framework

Relevance of domain size

Data & Methods

0.15 EV 0.10 0.05 Domain 7, summer, PREC 0.14 0.12 0.10 FV 0.08 0.06 0.04 0.02 ZZZZZZKKKKKKKK 77 ⊣໙໙໙໙ຎຎຎ⊢ 0.0.4.0.7.0.7.0.4.0.0.4.0.0. -00400-0-00400

Domain 7, summer, 2mT

Performance variations within spatial domains

ata

EV at gridboxes

Domain 7

winter

PREC

Results

Framework

Performance variations within spatial domains

2056 733

Framework

Objectives

Data & Method

Results

Conclusions

What can we learn from comparison studies in COST733?

- there is not one generally best individual CTC
- there is not one generally best basic approach
- distinct variations in performance among and within basic method groups
- performance shows marked seasonal and spatial variations (among and within spatial domains)
- high performance for the classified variable or for one target variable are not necessarily related to high performance for other target variables

Framework

Objectives

Data & Method

Results

What can we learn from comparison studies in COST733?

CH

- indications on strengths and weaknesses of basic methodological approaches:
 - OPT + MSLP
 - LDR/PCA + 2mT
 - THRES + PREC
 - effect of varying classification settings on performance:
 - sequencing: + 2mT / PREC
 - seasonal classifications: + / ?
 - additional input variables
 Vorticity: +PREC
 1000/500 thickness: +2mT
 - importance of domain size: the smaller the better?

Framework

What can we learn from comparison studies in COST733?

- there is still some work left ...

Objectives

Data & Method

Results