OPTIMISING OPERATIONAL RUNOFF FORECASTS WITH RESPECT TO WEATHER TYPES

Ulrike Drabek, University of Technology, Vienna - Institute of Hydraulic Engineering and Water Resources Management COST733 final event, Vienna, 22.-24.11.2010

Overview

- Operational flood forecasting some basics
- Methods, catchment and data
- Results Mixing models to yield an optimised forecast with respect to different hydrological and meteorological situations
- Conclusions and outlook

Hydrological forecasting

- □ Operational flood forecasting systems have often time-steps of 1h. → Gap between hydrology and meteorology
- Input data are:
 - observed discharge and precipitation (and/or temp.)
 - predicted precipitation (and/or temp.)
- The lead-time depends
 - on the physical concentration time of the catchment and
 - on the lead-time of the meteorological forecast's input
- The model performance depends on the ability of the model to describe the dominant process(es) of wave propagation and rainfall-runoff translation.

The performance of flood forecasting models

- The performance of different models under different hydrologic and/or meteorologic situations changes depending on the dominant process.
- □ Up to now weather class information is not used in operational flood forecasts. → How does model performance change with the weather type? Can this information be used in operational mode? Does the dominant hydrologic process correlate with the occuring weather type?
- □ Flood forecasting models should give good results during floods. (!) → Example

Example - Simulation

	one year	period	rising limbs	
	(8760 values)	(501 values)	(69 values)	
Q _{obs}	19.511	29.824	42.293	
Qsim	18.692	28.136	37.084	
R ²	0.947	0.887	0.884	
nme	-0.042	-0.057	-0.123	
nsdve	0.268	0.233	0.195	
nsme	0.940	0.784	0.755	

Evaluating performance over the whole validation period does not show performance especially during floods, which can differ considerably.

 \rightarrow Separation of rising limbs and everyday situation

The idea of mixing models

- If there are different models, each of them able to describe other processes and having therefore better results for different situations ...
- they can be combined to an optimised forecast depending on the ongoing hydrological and/or meteorological situation for improving the model performance.
- The performance of the optimised forecast should be better than the one of the best single model.

Methodology

- Deriving mixing parameters for different situations should give different weights for the single models.
- Separating hydrographs into rising limbs and everyday situation displays <u>hydrological situations</u>.
- Subdividing rising limbs into weather situations builds <u>sets of</u> <u>hydro-meteorological situations</u>.
- Performance measures *nsme* and R² are used for deriving the weights for the WAM.
- □ A regression model is compared to the WAM-model.

Catchment, models and weather situations

Catchment: river Gail in Carinthia, ~1400 km², 1200-1500mm/a, length ~120km, altitude 518 - 2780 m.a.s.l.

Data and Hydrological Models

Q (5 gauges) and N (areal rainfall) data 2000-2005, time-step: 1h

- HYSIM (late 1980ies, early 1990ies for electricity company VERBUND to optimise energy production) in two configurations:
- HY-W: only runoff routing from gauge to gauge (describing the everyday situation)
- HY-N: runoff routing with rainfall-runoff process at the headwater catchment and lateral inflow inbetween gauges. Threshold of accumulated effective rainfall starts RR-process modelling. (describing flood waves)

P2R: HBV-type, water-balance-model including snowaccumulation and snowmelt, in this case not distributed, catchment as one unit.

Step 1: Model performance for the hydrological situations

Step 2: Weather type classification (ZAMG WLK without humidity index)

		Σ	AA	AC	CA	CC
(00	130				
()1 NE	1215	632	468	59	56
0)2 SE	627	215	123	162	127
0)3 SW	3088	1554	567	724	243
(04 NW	3708	2374	1065	199	70
			4775	2223	1144	496

Classification for Austria 2000 – 2005 in 6h-timesteps

All data

	Σ	AA	AC	CA	CC
00	12				
01 NE	55	0	25	0	30
02 SE	154	27	51	33	43
03 SW	545	122	142	175	106
04 NW	128	50	65	9	4
		199	283	217	183

Classification for the rising limbs at Villach

Rising limbs

Vb weather type, Genoa low

Step 2: Model performance for rising limbs cyclonic – anticyclonic conditions

Step 3: Model performance for rising limbs under different flow directions (R²)

Step 4: Mixing parameters

- The mixing parameters are derived from the model performance. The optimised forecast then is a weighted mean.
- Nash-Sutcliffe model efficiency differs more than R² (nsme is pronouncing higher floods)

 \rightarrow mixing parameters are calculated from nsme.

Step 4: Mixing parameters nsme-WAM

Step 4: Regression model

Most weight on HY-W Bias with increasing lead-time

Performance of the optimised forecasts – rising limbs

... success! Mixing model performance is higher than the best single model

Performance of the optimised forecasts – rising limbs and weather conditions

Example

Conclusions and outlook

- Hydrological models show different performance under different hydro-/meteorological conditions.
- Flood forecasts can be optimised by applying a mixing model or regression model regarding to these conditions.
- There are differences in performance during different weather types
 - \rightarrow implementation leads to open questions
 - ... question of time-resolution
 - ... confidence interval
- The regression model (using discharge data = direct method) shows better accuracy than the both WAMmodels (using performance measures = indirect method).