The use of classifications from the COST733 database to detect effects of the 11-year solar cycle on atmospheric circulation over Europe

Radan HUTH, Monika CAHYNOVÁ

Institute of Atmospheric Physics, Prague, Czech Republic (huth@ufa.cas.cz)

- Wolf numbers (R) (~numbers of sunspots)
- solar radio flux 10.7 cm (F10.7)
- (the choice of variable has only a minor effect on results)

mechanisms?

- modes of low-frequency variability
- Arctic Oscillation
- teleconnectivity
- blocking activity
- cyclonic activity
- circulation effects on surface climate
- frequency of synoptic types

Mechanisms of the effects Sun→Earth

- several potential mechanisms
- so far unclear, which of them are really acting and how much they contribute
 a new COST Action on it

Potential mechanisms

- Stratospheric ozone: change in UV radiation
 → O₃ concentration → stratospheric
 temperature → stratospheric circulation →
 downward propagation of the signal to the
 troposphere
- change of currents in the global electric circuit atmospheric circulation
- changes in concentrations of particles of cosmic origin cosmic origin clouds
- direct heating of ocean surface → feedbacks with cloudiness → atmospheric circulation

Data & Methods

monthly mean values

٢

- extended winter (XII III)
 - 1961 2000 (1949-2003 for Hess&Brezowsky)
 - main methodological concept: division of data according to the solar activity into three groups (low, medium, high)
 - separate analysis in each solar activity class

SYNOPTIC TYPES

after Hess&Brezowsky

- grouped into 10 'major types' and 6 'supertypes'
- mean SLP anomaly maps
- from COST733 database v2.0
 - for SLP
 - have 11 types or fewer
 - for domain D07 (central Europe)
 - SANDRA and SOM are identical → only SANDRA is retained
 - altogether 17 class's
 - types are characterized by mean anomaly maps (centroids) for 500 hPa heights

METHODOLOGY

- what's calculated:
 - mean frequencies of types (supertypes)
 - for each solar activity class
- statistical significance testing
 - is the frequency in the given solar activity class different from the (long-term) mean frequency of the type?
 - using block resampling

Wz

Ws

	low	medium	high
solar	26,2	31,6	33,7

northwesterly

NWz

	low	medium	high
solar	6,9	10,0	6,7

	low	medium	high
solar	17,9	13,0	11,0

northeasterly

NEz

	low	medium	high
solar	2,0	2,4	1,6

HFa

	low	medium	high
solar	12,9	6,0	9,1

southeasterly

	low	medium	high
solar	5,4	4,3	5,9

	low	medium	high
solar	6,9	6,5	5,8

southwesterly

	low	medium	high
solar	6,4	7,8	6,8

central European high

	low	medium	high
solar	13,1	16,1	16,5

central European low

TM

	low	medium	high
solar	1,4	1,1	2,5

major types

W / E types – less / more frequent in solar minima moderate vs. high solar activity – little difference

A / C types – less / more frequent in moderate solar activity Relative frequency (1.0 = climatological mean) N types – less frequent in solar maxima

NW + NE types – most frequent in moderate solar activity

RESULTS, Hess&Brez

Most striking effect – for quarters stratification:

- □ low solar activity: W types less than twice as frequent as E types (39.5% vs. 20.4%)
- moderate solar activity: W types almost four times more frequent than E types (49.5% vs. 12.8%)

COST733 class's

ordered by the frequency ratio high / low solar

- i.e.
 - (top) left: types most frequent under low solar activity / least frequent under high solar activity
 - (bottom) right: types most frequent under high solar activity / least frequent under low solar activity

Example 1: GWT

Example 2: JCT

400

200

-200

-400 -600

800

1000

1200

-200 -400

-60

All classifications together: types significantly more frequent in maxima / less frequent in minima

types with westerly flow prevail

CONCLUSIONS

- effects of solar activity on NH tropospheric circulation are significant, some are surprisingly strong
- in solar maxima:
 - zonalization of flow over North Atlantic and Europe