

COST733 Final workshop Classifications in atmospheric sciences and their applications, present state & future directions. Vienna, Austria 22-24. November 2010

Application of a weather type classification to assess the impact of climate change on flood occurrence in Austria

Philipp Stanzel¹, Thomas Krennert², Hans-Peter Nachtnebel¹

¹Institute of Water Management, Hydrology and Hydraulic Engineering Department of Water, Atmosphere and Environment University of Natural Resources and Life Sciences, Vienna, Austria

²ZAMG-Central Institute for Meteorology and Geodynamics, Vienna, Austria

Floods

Large floods in Austria 2002, 2005 (picture: Steyr 2009)

"more floods due to climate change"

Floods

Large floods in Austria 2002, 2005 (picture: Steyr 2009)

"more floods due to climate change"

Flood trends in Austria, Nobilis&Lorenz 1997

no general trends observed

Period	Stations	Number of floods per year	
		Trend (p positive	= 0.05) negative
1952-1961	177	15	3
1962-1971	232	2	10
1972-1981	336	96	10
1982-1991	441	16	24
1952-1971	162	5	11
1972-1991	321	38	11
1952-1991	142	29	11

Flood trends in Germany, Petrow&Merz 2009

Application of a weather type classification to assess the impact of climate change on flood occurrence in Austria

– Aim:

Investigate possible changes in occurrence of flood events due to climate change in Austria

- Using climate model data
- Focusing on meteorological impacts
- Approach:

– Aim:

Investigate possible changes in occurrence of flood events due to climate change in Austria

• Using climate model data

 Simplified version of the WLKC733 classification scheme developed in the framework of COST733

- Input variables:
 - geopotential height at 500 hPa and 925 hPa
 - true wind at 700 hPa
- Result: 36 weather types

described by

- flow direction class
- •cyclonic or anticyclonic vorticity at the two levels

Weather type example: **7 A C** 7 : wind dominantly from west A: anticyclonal at 500hPa C: cyclonal at 925hPa

wind sectors (0 = undefined)domain of analysis and weights

Application of a weather type classification to assess the impact of climate change on flood occurrence in Austria

Flood periods

12

11

- Runoff data:
 - 554 gauges
 - 1971 2000
- Seven climate regions in Austria
- Peak over threshold approach (4 events/year)
- Seasonal analysis

n

Flood generating weather types

– Weather type catalogue for 1971-2000 from ERA40

 Relative frequency of occurrence of weather types in flood generating periods (relative to overall occurrence)

ZAMG

Flood generating weather types

➤ 10 flood generating weather types selected for CC analysis

for each climate region and season

– Aim:

Investigate possible changes in occurrence of flood events due to climate change in Austria

- Using climate model data
- Focusing on meteorological impacts

Application of a weather type classification to assess the impact of climate change on flood occurrence in Austria

- Climate model data:
 - ECHAM5 : A1B, B1
 - HADCM3C: A1B
- -WLK733: ERA40 vs. GCM control runs
 - good agreement for flow directions
 - large discrepancies for specific weather types
- -WLK733: scenarios
 - shifts from control runs to scenarios (2nd half of 21st century) smaller than deviations

0AC

type

– Aim:

Investigate possible changes in occurrence of flood events due to climate change in Austria

- Using climate model data
- Focusing on meteorological impacts
- Approach:

Application of a weather type classification to assess the impact of climate change on flood occurrence in Austria

Climate change and flood occurence

- Change in occurrence of flood generating weather typ:
 Indicator for change in flood occurence
- Qualitative analysis

For most climate regions and seasons projected changes varied for different climate models and scenarios

Consistent findings only for winter and spring and western and northern regions: increase in frequencies of flood generating weather types

Flood generating weather types can be identified with WLKC733

- Large uncertainties in climate change application:
 - Discrepancies in weather type frequencies from reanalyses and GCM control runs
 - Different projections in different scenarios and different models
- > No drastic changes in circulation patterns over central Europe expected
- Consistent trends:
 - Increase in north-western and western flows in winter and spring
 - Indicator for more frequent flood occurrences in northern and western regions of Austria, where these circulation patterns prevalently cause flood events.

COST733 Final workshop

Classifications in atmospheric sciences and their applications, present state & future directions. Vienna, Austria 22-24. November 2010

Thank you for your attention!

Philipp Stanzel (philipp.stanzel@boku.ac.at) Thomas Krennert Hans-Peter Nachtnebel

The presented work was funded by the Austrian "Klima- und Energiefonds"

