
Note No. 8/2005
Oceanography

Oslo, 27th April 2005

The ncl-metno shell script collection 1

Arne Melsom

1If viewed with Acrobat ReaderR©, the pdf file with this document contains hyperlinks that are active when the an
Internet connection is open.

note
Number Subject Date Classification ISSN

8/2005 Oceanography 27th April 2005 � Open
� Restricted
� Confidential

-

Title

The ncl-metno shell script collection

Authors

Arne Melsom

Client(s) Client reference

Norwegian Science Council 146476/120, 155972/720

Abstract

This note documents a set of shell scripts that make it easy to create a variety of depictions
with filled contours and/or vectors. This software only works for fields that have been stored
on netCDF files. Each of these shell scripts produce a script for the NCAR Command Lan-
guage (NCL), and NCL is executed with the NCL script as input. NCL then produces figures,
predominantly as a set of png and eps files. The depiction is also displayed in a terminal win-
dow. The software that is documented in this note has been developed for UNIX platforms,
and the scripts are written in the “Bourne again shell” (bash).

Keywords

NCL, netCDF, visualization, wrapper

Disciplinary signature Responsible signature

Øystein Hov, Head R&D Department Eivind A. Martinsen,
Head, Section Oceanography

Postal address
PO Box 43 Blindern
N-0313 Oslo
Norway

Office
Niels Henrik Abels vei 40

Telephone
+47 2296 3000

Telefax
+47 2296 3050

e-mail: met.inst@met.no
Web: met.no

Bank account
7695 05 00601

Swift code
DNBANOKK

Contents Contents

Contents

1. Introduction 3

2. Installation 4

3. Filled contours 4

4. Vectors 6

5. Filled contours and vectors 7

6. Miscellaneous scripts 7

7. Modifying the ncl scripts 7
7.1. Title . 8
7.2. Zooming . 8
7.3. Plot size . 8
7.4. Contouring specifications . 9
7.5. Vector specifications . 9
7.6. Color map (palette) . 10
7.7. Map projection . 11
7.8. Coastline details . 11

8. Error messages 11

A. contour.sh, syntax 13

B. Dcontour.sh / Scontour.sh, syntax 14

C. mcontour.sh, syntax 16

D. c-mask.sh, syntax 18

E. section.sh, syntax 20

F. layersection.sh, syntax 21

G. mlayersection.sh, syntax 22

H. addlayers.sh, syntax 23

I. vector.sh, syntax 24

J. Svector.sh, syntax 25

1

Contents Contents

K. mvector.sh, syntax 26

L. transport.sh, syntax 27

M. v-on-c.sh, syntax 29

N. makemovie.sh, syntax 30

2

1 INTRODUCTION

1. Introduction

The main purpose of the software that is documented in this note, is to provide an easy-to-use,
command line based working environment for visualization of results that are stored on netCDF
formatted files. In order to achieve this, a set of shell scripts that utilizes the NCAR Command
Language (NCL) has been developed. Thus, the software that is documented here is merely a tool
for swift production of graphics, and the tool (wrapper scripts) is entirely dependent on NCL.
NCL, which is available for free in binary, is a product of the Scientific Computing Division at the
National Center for Atmospheric Research (NCAR). In the present context, it should be stressed
that NCL is not only a visualization tool, but may also favorably be used for data processing
purposes. Documentation, NCL sample scripts, and much more, are available from NCL’s web
site athttp://www.ncl.ucar.edu/ .

A second purpose of ncl-metno is to provide the user with an NCL script that can subsequently
be edited by a user with knowledge of NCL, in order to modify the depiction to his or her needs.
A third purpose is to aid a potential NCL user in getting started using the NCL software, since
inspection of NCL scripts that are made by the ncl-metno package may be useful as a starting
point for learning NCL. In the latter respect, it must be mentioned that excellent information
for new users are available from the NCL web site, in particular, Getting Started Using NCL is
useful.

Some of the terms that are used later in this document, are explained here. When referring to
the sequence of array dimensions, the term “Fortran style” is used frequently. This term means
that the order of variation in array indices run from left to right, and starts with index 1. Thus, in
“Fortran style” a two-dimensional arrayvar is stored as
var(1,1) var(2,1) . . . var(m,1) var(1,2) var(2,2) . . . var(m,2) . . . var(m,n)
However, the order of variation is reversed in NCL scripts, and the index starts from 0. Thus,
translating “Fortran style” above to the format used in NCL scripts, we have
var(0,0) var(0,1) . . . var(0,m-1) var(1,0) var(1,1) . . . var(1,m-1) . . . var(n-1,m-1)

Further, it is customary to store 3-dimensional and 4-dimensional fields in the orderx – y – z,
x – y – t, andx – y – z – t (in “Fortran style”), so crossections with a constantz (and t) are
horizontal slices. The vertical coordinate is sometimes a layer number rather than a verticalz-
level number. Fields that are stored on a geographical grid on netCDF files typically use the
horizontal dimensionslon and lat in places ofx andy. For ncl-metno, the dimensions are only
relevant if you wish to include a map in the depictions. Then, horizontal 1-dimensional variables
lon and lat must exist on the same netCDF file as the one that contains the field you wish to
visualize.

This note is organized as follows: First, installation instructions are provided in section 2.
Then, the various types of shell scripts are described in sections 3-6. Next, the user is guided
through some easy steps for modifying the depictions in section 7, and some frequently occurring
error messages are explained in section 8. Finally, each of thencl-metnoshell scripts are docu-
mented in appendices A-N. This documentation is in part based on the hypertext documentation
of ncl-metno, and in part based on help texts that are available for the various shell script in this
software.

3

http://www.ncl.ucar.edu/
http://www.ncl.ucar.edu/Document/Manuals/Getting_Started/

3 FILLED CONTOURS

DISCLAIMER: This software has been written by a programmer who’s not really a program-
mer, but a scientist. Mistakes may well have been made, so USE THIS SOFTWARE AT YOUR
OWN RISK! . . . I should add that using earlier versions ofncl-metnofor more than a year, I have
never experienced any serious problems.

WARNING: When these shell scripts are executed, some files will be generated in the working
directory. This is typically a NCL script file named with a leading “dot” (e.g..contour.ncl), and
a set ofpngandepspicture files. The m*.sh scripts produce sets ofpnmfiles.

2. Installation

Before you can install and run the present software, you must download and install NCL on
your system (unless it exists already). Next, you must download thencl-metnosoftware, which
is available fromhttp://ensemble.met.no/ncl-metno/ . The tar-ball that you can
download from this site also includes documentation of the shell scripts (in hypertext, and this
document). In order to installncl-metno, you must first set some paths in the INSTALL file:
$ncldir is the directory where thencl-metnoshell scripts will be stored, and$linkdir is the di-
rectory where binaries reside (typically, this is the directory included in your $PATH). You may
optionally set$htdir to a path where you wish to store the hypertext documentation ofncl-metno.
Then, you should complete the installation by typing./INSTALLon the command line prompt.
This rather liberal implementation allows a user to install this software locally if he or she is
working in a network and does not have super user privileges (provided that such an installation
is in accord with the user’s institute’s/company’s policy!)

Note that for this document,$ncldir was set to/usr/local/selfmade/nclso paths will generaly
be different in your implementation than they appear here.

3. Filled contours

Thencl-metnosoftware comes with nine scripts that produce depictions with filled contours:

• contour.sh
makes a depiction of a 2-dimensional field, or of a “horizontal” slice from a 3-dimensional
or 4-dimensional field

• Dcontour.sh
makes a depiction of differences between two fields that must have the same dimensions;
this may e.g. be useful for inspection of trends

• Scontour.shmakes a depiction of the sum of two fields that have the same dimensions

• mcontour.sh
produces multiple pnm files that may later be turned into an animation (seemakemovie.sh
in section 6 and its documentation in appendix N for details); otherwise, this is the same
ascontour.sh

4

http://ensemble.met.no/ncl-metno/

3 FILLED CONTOURS

Figure 1:Some sample depictions. The top
left panel was produced byadd-
layers.sh, the top right panel was
made by contour.sh, while the
bottom left panel was generated by
c-mask.sh.

• c-mask.sh
makes a depiction of one field, but with a masking that is set based on an interval from
another field; otherwise, this is the same ascontour.sh

• section.sh
makes a depiction of a crossection from a 3-dimensional or 4-dimensional field, along
constant nodes in the dimensions that are not displayed; this may e.g. be useful for making
Hovmøller plots

• layersection.sh
makes a depiction of a x-z or y-z crossection when the third dimension is layer no.; layer
thickness values must also be available

• mlayersection.sh
produces multiple pnm files that may later be turned into an animation (seemakemovie.sh
in section 6 and its documentation in appendix N for details); otherwise, this is the same
aslayersection.sh

• addlayers.sh
adds values in adjacent levels/layers from 3-dimensional or 4-dimensional fields; this may
e.g. be useful for depicting the level of isopycnals when the vertical coordinate is density

5

4 VECTORS

Figure 2:Some sample depictions. The left panel was produced bySvector.sh, while the
right panel was generated byc-on-v.sh.

Documentation of these scripts is provided as appendices A-H.

4. Vectors

Thencl-metnosoftware comes with three scripts that produce vector depictions:

• vector.sh
depicts a vectors based on u- and v-components from 2-dimensional fields, or from a “hor-
izontal” slice from 3-dimensional or 4-dimensional fields

• Svector.sh
adds two u-component fields and two v-component fields; otherwise this is the same as
vector.sh

• mvector.sh
produces multiple pnm files that may later be turned into an animation (seemakemovie.sh
in section 6 and its documentation in appendix N for details); otherwise, this is the same
asvector.sh

Documentation of these scripts is provided as appendices I-K.

6

7 MODIFYING THE NCL SCRIPTS

5. Filled contours and vectors

The ncl-metnosoftware comes with two scripts that produce vector depictions on top of filled
contours:

• transport.sh
computes transports as the product of a scalar field and a vector fields, and depicts the
result as vectors on top of transport (flux) values

• v-on-c.sh
depicts a vector field on top of a filled contours for a scalar field

Documentation of these scripts is provided in appendices L-M.

6. Miscellaneous scripts

There are two remaining scripts in thencl-metnosoftware:

• cropone.sh
crops a pnm image

• makemovie.sh
converts a set of pnm files to an animation, in thempegformat or in thefli format

Documentation ofmakemovie.shis provided in appendix N.

7. Modifying the ncl scripts

A number of plot specification are collected in the fileuserdef.ncl, which was written to the
directory$ncl-metnothat was specified during installation, see section-2 for details. When one
of the shell scripts is run, it first looks for auserdef.nclin the working directory. If this file can’t
be found in the working directory, the script resorts to$ncl-metno/userdef.nclfor the default
specifications. In the documentation of the individual scripts in appendices A-N,$ncl-metno
was set to/usr/local/selfmade/ncl.

Hence, in order to change the specifications in$ncl-metno/userdef.ncl, the user must copy this
file to the working directory, then edit the localuserdef.nclfile, and finally run thencl-metno
shell script. For editing purposes, note that a semi-colon (’;’) marks the start of a comment in
NCL. Various aspects of the depiction that may be modified are described in the subsections
below. Note that each of these aspects in general only has an affect on results from a subset of
thencl-metnoshell scripts (e.g., “Vector specifications” only affects visualizations that include
vectors).

7

7.1 Title 7 MODIFYING THE NCL SCRIPTS

Figure 3:The right panel displays results after zooming in on a north eastern sub-domain
in the left panel. See the text for details.

7.1. Title

The plot’s title is given bymytitle. By default, this is set to “auto”, then, the shell script will
produce a title. All but one of the figures in this document have been made with this setting.
Resetmytitle to whatever you like, if you don’t want a title to appear (as on the cover of this
document), leave the string empty. But don’t delete (or comment) themytitle line!

7.2. Zooming

From time to time, the user may wish to inspect detailed results in a subregion. This can be done
by resettingx1, y1to the subregion’s lower left corner, andx2, y2to its upper right corner. These
values should be set in “Fortran style”. These may be set as absolute numbers, or fractions of
’nx’ and ’ny’ (e.g. y1=12,y2=3*ny/5). By default, the entire domain is depicted.

In Figure 3, results are displayed before and after three lines in theuserdef.nclfile was edited:

x1= nx-50 ; Leftmost grid point to depict, for dimension x or lon
x2= nx ; Rightmost grid point to depict
y1= ny-40 ; Lowermost grid point to depict, for dimension y or lat
y2= ny ; Uppermost grid point to depict

7.3. Plot size

The maximum paper size of the plot is set asmaxsize. For depictions without a map, the shell
scripts will set the height and width of the plot so that one grid cell has the same size in both
directions. Further,xpandyp is the x- and y-coordinate of the upper left corner of the plot.

8

7.4 Contouring specifications 7 MODIFYING THE NCL SCRIPTS

Figure 4:The right panel displays results after the color coding was reset. See the text for
details.

7.4. Contouring specifications

The lower and upper isopleths are given byv1 andv2, respectively. The number of isopleths is
given bynv. Note that the depictions that are produced byncl-metnofills regions between the
isopleths with colors, the actual isopleths are not drawn. So, ifv1=1.,v2=10., andnv=10, a total
of 11 colors will be used, for the intervals〈−∞,1〉, 〈1,2〉 . . .〈9,10〉, 〈10,∞〉. By default, NCL will
automatically select a modest no. of isopleth values. As long asnv=0 or 1, NCL will resort to its
default method.

The range that is automatically generated by NCL whennv=0 or 1 is not always the best. It
may be a good idea to manually set the color specification inuserdef.ncl, particularly when there
are outliers. An example of this is displayed in Figure 4. Here, results are displayed before and
after three lines in theuserdef.nclfile was edited:

v1= 35.00 ; Low value for isopleths, disregarded when nv is 0 or 1
v2= 35.085; High value for isopleths, disregarded when nv is 0 or 1
nv= 17 ; No. of isopleths, there will be nv+1 colors

7.5. Vector specifications

The physical size of a reference vector is given byvsz, corresponding to a speedvsp. Increasevsp
(or decreasevszto shorten the length of vectors. (Their preset values are for ocean currents, so
vectors will be unpleasantly long for e.g. wind speeds.) Further,vd is a measure of the distance
between neighboring vectors. Increase its value to decrease the no. of displayed vectors. Finally,
when curly_on is set to 1 (its default value), pieces of streamlines are displayed rather than
standard vectors. Setcurly_on=0 for standard vectors.

In Figure 5, the size and density of the vectors were changed by resettingvspandvd, while
vsz(andcurly_on) were left unchanged:

9

7.6 Color map (palette) 7 MODIFYING THE NCL SCRIPTS

Figure 5:The right panel displays results after the size and density of the vectors were
modified. See the text for details.

vsz= 0.05 ; Size (length) of reference vector
vsp= 0.02 ; Speed of reference vector
vd = 0.04 ; Distance between vectors
curly_on= 1 ; =1: Use curly vectors, otherwise, use standard vectors

The default values ofvspandvdare 0.03 and 0.015, respectively.

7.6. Color map (palette)

NCL comes with a range of predefined color maps, and the user may also define his or her own
color maps. A selection of the predefined palettes are listed inuserdef.ncl. The preselected color
map is a “rainbow style” palette with 18 different colors. The user may change this setting by
un-commenting the appropriate line inuserdef.ncl.

Now, reconsider the results that are displayed in Figure 4, and the contouring specification
used in the right panel. These results are redisplayed in Figure 6, using two of the alternative
color maps. The left panel was produced after the relevant section inuserdef.nclwas rewritten to

;mapname="LR BkBlAqGrYeOrReViWh200"; rainbow style, nv <= 17
;mapname="HR BkBlAqGrYeOrReViWh200"; rainbow style, nv <= 35
mapname="LR BlWhRe" ; blue/white/red, nv <= 17
;mapname="HR BlWhRe" ; blue/white/red, nv <= 35
;mapname="nrl_sirkes" ; NRL, nv <= 17
;mapname="gsdtol" ; grayscale, nv <= 17
;mapname="default" ; tigerstripes, nv <= 17

i.e., the top line in the default setting onuserdef.nclwas commented by introducing a leading
semi-colon, while the third line was un-commented.

10

7.7 Map projection 8 ERROR MESSAGES

Figure 6:Results in the left and right panels are displayed using the color maps
“blue/white/red” (BlWhRe) and “NRL” (nrl_sirkes), respectively. See the text
for details.

7.7. Map projection

Most of thencl-metnoshell scripts support the use of maps in NCL. When a map is requested,
the user must specify the map projection to be used. A list of map projections is provided in
userdef.ncl, which by default will plot the selected field on a “LambertEqualArea” projection.
The user may choose one of the alternative projections by un-commenting the appropriate line
in userdef.ncl.

7.8. Coastline details

NCL presently handles three different levels of map details, namely “Ncarg4_0”, “Ncarg4_1”
and “RANGS_GSHHS” for coarse, intermediate and high resolutions, respectively. The use of
“RANGS_GSHHS” may require a separate installation, see the NCL installation instructions.
The “Ncarg4_1” medium resolution map is used as the default inuserdef.ncl. Alternative maps
may be chosen by un-commenting the appropriate line inuserdef.ncl.

8. Error messages

Some errors occur more frequently than others. Here are a couple.
First, lets try to plot a horizontal slice of the variablesalt from the netCDF fileexpt_004_S.nc:

mycomputer:∼% contour.sh 4d expt_004_S.nc salt 1 1

fatal:Either file (ncfile) isn’t defined or variable (salt)
is not a variable in the file

fatal:Execute: Error occurred at or near line 12

This error message is easy to understand. In this particular case, the netCDF file exist, but there
are no variablesalton the file.

11

8 ERROR MESSAGES

Now, let’s request a depiction for the variablesalinon the same netCDF file:
mycomputer:∼% contour.sh 3d expt_004_S.nc salin 1

fatal:Number of subscripts do not match number of dimensions of variable,
(3) subscripts used, (4) subscripts expected

fatal:Execute: Error occurred at or near line 11

In the case above, the user requested a depiction of a 3-dimensional variable, but the variable
salinwas stored on the netCDF file as a 4-dimensional variable. If the user wishes to inspect the
NCL script, he or she may set a flag for retaining the NCL script:
mycomputer:∼% contour.sh 3d CONMAN_004_S.nc salin -1
Obviously, the same error occurs, but the NCL script is retained:

Saving ncl script file as ~/.contour.ncl

We inspect the NCL script:
mycomputer:∼% head -12 .contour.ncl | tail -3
and find that the error is actually in line 12 (or on line‘11, if the top line is “NCL style” line 0):

d30 = 1-1

ncvar0 = ncfile->salin(d30,:,:)

A depiction for the first level and the first output time for this 4-dimensional variable is obtained
by issuing
mycomputer:∼% contour.sh 4d CONMAN_004_S.nc salin 1 1

Finally, let’s try to plot the salinity field on a map:
mycomputer:∼% contour.sh 4dmap CONMAN_004_S.nc salin 1 1
Now we got the error message:

fatal:Number of subscripts do not match number of dimensions of variable,
(1) subscripts used, (2) subscripts expected

fatal:Execute: Error occurred at or near line 274

This one is a bit harder to grasp. The problem here is with the dimensional variableslon and
lat. These variables existed on the netCDF fileCONMAN_004_S.nc(as they must for the4dmap
option to work), but as 2-dimensional variables. Thesalinfield was not stored on a geographical
grid, andcontour.shis unable to plot the field on a map.

Acknowledgement. This software is entirely dependent on the NCAR Command Language
(NCL). I am indebted to the developers of NCL. This software has been written in connection
with two projects that were funded by the Norwegian Research Council, under contracts no.
146476/120 and 155972/720, respectively.

12

A CONTOUR.SH, SYNTAX

A. contour.sh, syntax

contour.sh <option> <file> <variable> [<d3node> (<d4node>)]
where

<option> specifies dimensions and geo- or nongeo-grid
implemented:

2d - 2D fields
3d - 3D fields
4d - 4D fields
2dmap - 2D fields, dims. are lon & lat
3dmap - 3D fields, first two dims. are lon & lat
4dmap - 4D fields, first two dims. are lon & lat
...2/3/4dmap will be displayed on a lon-lat grid

with a map
<file> name of the netcdf file
<variable> name of requested variable on the netcdf file

(case sensitive)
<d3node> node no. of third dimension

if <option> is one of 2d, 2dmap and a fourth
argument is present, or if <d3node> is negative,
this will be interpreted as a flag that will cause
the ncl script to remain (see examples below)

<d4node> node no. of fourth dimension

The script will produce an eps-file and a png-file.

User specifications:
====================

By copying the default spec.s from
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’contour.sh’ is given,
the user may specify

* title
* zooming
* map projection (lon-lat grids only)
* color map (palette)
* no. of colors
* plot size limits
* coastline detail level
(look up, or copy, this file to edit your own ’userdef’ file).

Examples:
=========

contour.sh 4dmap hydrography.nc temp 1 10
will produce a depiction on a lon-lat grid w/ a map,

for the first node in the third dimension (usually
the top vertical level) and the tenth node in the
fourth dimension (usually time step no. 10),
of the variable ’temp’ on the file ’hydrography.nc’

contour.sh 3d surface.nc sst -1
will produce a depiction on a x-y grid of the first node

in the third dimension, of the variable ’sst’ on the
file ’surface.nc’; and the ncl-script will be retained

contour.sh 2dmap topography.nc Depth a
will produce a depiction on a lon-lat grid w/ a map,
of the variable ’Depth’ on the file ’topography.nc’;

and the ncl-script will be retained

13

B DCONTOUR.SH / SCONTOUR.SH, SYNTAX

B. Dcontour.sh / Scontour.sh, syntax

-> for 2D fields:
Dcontour.sh <option> <file1> <file2> <var1> <var2>

-> for 3D fields:
Dcontour.sh <option> <file1> <file2> <var1> <var2> [<d3node1> <d3node2>]

-> for 4D fields:
Dcontour.sh <option> <file1> <file2> <var1> <var2> \

[<d3node1> <d3node2> (<d4node1> <d4node2>)]
where

<option> specifies dimensions and geo- or nongeo-grid
implemented:

2d - 2D fields
3d - 3D fields
4d - 4D fields
2dmap - 2D fields, dims. are lon & lat
3dmap - 3D fields, first two dims. are lon & lat
4dmap - 4D fields, first two dims. are lon & lat
...2/3/4dmap will be displayed on a lon-lat grid

with a map
<file1> name of netcdf file w/<var1>
<file2> name of netcdf file w/<var2>,

you may type ’.’ if <file1> & <file2> are the same
<var1> name of requested variable on <file1> (case sensitive)
<var2> name of requested variable on <file2> (case sensitive)

you may type ’.’ if <var1> & <var2> are the same
<d3node1>, <d3node2>

node no.s of third dimension for <var1> and <var2>,
respectively

you may type ’.’ for <d3node2> if <d3node1>
and <d3node2> are the same

if <option> is one of 2d, 2dmap and a fourth
argument is present, or if <d3node1> is negative,
this will be interpreted as a flag that will cause
the ncl script to remain (see examples below)

<d4node1>, <d4node2>
node no.s of fourth dimension for <var1> and <var2>,

respectively
you may type ’.’ for <d4node2> if <d4node1>

and <d4node2> are the same

The script will produce an eps-file and a png-file.

User specifications:
====================

By copying the default spec.s from
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’Dcontour.sh’ is given,
the user may specify

* title
* zooming
* map projection (lon-lat grids only)
* color map (palette)
* no. of colors
* plot size limits
* coastline detail level
(look up, or copy, this file to edit your own ’userdef’ file).

14

B DCONTOUR.SH / SCONTOUR.SH, SYNTAX

Examples:
=========

Dcontour.sh 4dmap hydro1.nc hydro2.nc temp T 1 1 10 10
will produce a depiction on a lon-lat grid w/ a map,

of the difference at the first vertical level and
the tenth time step of the variables ’temp’ and ’T’,
between these fields on ’hydro1.nc’ and ’hydro2.nc’
(positive where hydro1.nc->temp .gt. hydro2.nc->T;
when the third and fourth dimensions for both variables
are vertical level and time, respectively

Dcontour.sh 4dmap hydro1.nc . salt . 4 3 10 .
will produce a depiction on a lon-lat grid w/ a map,

of the difference at the tenth time step on ’hydro1.nc’
between ’salt’ at the fourth and third vertical level
(positive where salt(,,4,) .gt. salt(,,3,);
when the third and fourth dimensions are vertical level
and time, respectively

The syntax for Scontour.sh is identical to the syntax for Dcontour.sh.

15

C MCONTOUR.SH, SYNTAX

C. mcontour.sh, syntax

NOTE: The user is **STRONGLY** recommended to copy
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’mcontour.sh’ is given,
and at least specify

* color map (palette)
-otherwise, the series of files produced by mcontour.sh

will (usually) NOT have the same color map (see more information below)
NOTE: This script will provide a set of output files, where

the value of the final (3rd or 4th) dimension changes from
one output file to the next. Below, we assume that this
dimension is time.

Syntax:
=======
...if <option> is 4d or 4dmap:

mcontour.sh <option> <file> <variable> <depth> <first> <last> (<step>)
...if <option> is 3d or 3dmap :

mcontour.sh <option> <file> <variable> <first> <last> (<step>)
where

<option> specifies dimensions and geo- or nongeo-grid
implemented:

3d - 3D fields
4d - 4D fields
3dmap - 3D fields, first two dims. are lon & lat
4dmap - 4D fields, first two dims. are lon & lat
...3/4dmap will be displayed on a lon-lat grid

with a map
<file> name of the netcdf file
<variable> name of requested variable on the netcdf file

(case sensitive)
<depth> vertical level no.
<first> first time step no.
<last> last time step no.
<step> time step between consequtive frames

(optional, set to 1 if not specified by user)

The script will produce a set of pnm-files.

User specifications:
====================

By copying the default spec.s from
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’mcontour.sh’ is given,
the user may specify

* title
* zooming
* map projection (lon-lat grids only)
* color map (palette)
* no. of colors
* plot size limits
* coastline detail level
(look up, or copy, this file to edit your own ’userdef’ file).

16

C MCONTOUR.SH, SYNTAX

Examples:
=========

mcontour.sh 4dmap hydrography.nc temp 1 10 15
will produce 6 pnm-files for time steps 10-15

of the first vertical level of the variable ’temp’
on the file ’hydrography.nc’, on a lon-lat grid w/ a map

mcontour.sh 3d surface.nc sst 1 9 2
will produce 5 pnm-files for time steps 1, 3, 5, 7 and 9
on a x-y grid of the variable ’sst’ on the file ’surface.nc’

17

D C-MASK.SH, SYNTAX

D. c-mask.sh, syntax

c-mask.sh <option> <file1> <file2> <var1> <var2> <val1> <val2> \
[<d3node> (<d4node>)]

where
<option> specifies dimensions and geo- or nongeo-grid

2d /2dr - 2D fields
3d /3dr - 3D fields
4d /4dr - 4D fields
2dmap/2dmapr - 2D fields, dims. are lon & lat
3dmap/3dmapr - 3D fields, first two dims.

are lon & lat
4dmap/4dmapr - 4D fields, first two dims.

are lon & lat
...2/3/4dmap(r) requires that hor. dim.s

are lon & lat
options *r mask values inside the range

[<val1>,<val2>], other options mask values
outside of the range

<file1> name of the netcdf file w/ variable to depict
<file2> name of the netcdf file w/ masking variable

you may type ’.’ if <file1> & <file2> are the same
<var1> name of variable on the netcdf file to depict

(case sensitive)
NOTE! This script requires the existence of an

attribute ’missing_value’ to <var1>
<var2> name of variable to use for masking <var1>

(case sensitive)
you may type ’.’ if <var1> & <var2> are the same

<val1>, <val2>
limits for masking:

<option> = *r :
<var1> will be masked for values INSIDE the range

(<val1>,<val2>)
otherwise :

<var1> will be masked for values OUTSIDE the range
(<val1>,<val2>)

<d3node> node no. of third dimension
if <option> is one of 2d(r), 2dmap(r) and a fourth

argument is present, or if <option> is negative,
this will be interpreted as a flag that will cause
the ncl script to remain (see examples below)

<d4node> node no. of fourth dimension

The script will produce an eps-file and a png-file.

User specifications:
====================

By copying the default spec.s from
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’c-mask.sh’ is given,
the user may specify

* title
* zooming
* map projection (lon-lat grids only)
* color map (palette)
* no. of colors
* plot size limits
* coastline detail level
(look up, or copy, this file to edit your own ’userdef’ file).

18

D C-MASK.SH, SYNTAX

Examples:
=========

c-mask.sh 4dmap hydrography.nc temp salt 34 35 1 10
will produce a depiction on a lon-lat grid w/ a map,

of the first vertical level and the tenth time step
of the variable ’temp’ on the file ’hydrography.nc’

the ’temp’ field will be masked wherever ’salt’ is outside
the range <34, 35>

c-mask.sh 3dr surface.nc ssh sst 0 10 -1
will produce a depiction on a x-y grid for the first
node in the third dimension time step, of the variable

’ssh’ on the file ’surface.nc’; and the ncl script
will be retained; the ’ssh’ field will be masked
wherever ’sst’ is negative or >10

19

E SECTION.SH, SYNTAX

E. section.sh, syntax

section.sh <file> <variable> <ndims> <dim1> <dim2> <node1> (<node2>)
where

<file> name of netCDF file
<variable> name of variable to depict
<ndims> no. of dimensions of the variable (3 or 4; for 2,

use contour.sh xy ...)
<dim1> crossection’s 1. dimension no. (1-3) [Fortran style]
<dim2> crossection’s 2. dimension no. (2-4) [Fortran style]
<node1> node no. of first non-depicted dimension

a negative <node1> value is interpreted as a flag
that stops the ncl script from being deleted

<node2> node no. of second non-depicted dimension
(if <ndims> is 4)

The script will produce an eps-file and a png-file.

User specifications:
====================

By copying the default spec.s from
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’section.sh’ is given,
the user may specify

* title
* zooming
* color map (palette)
* no. of colors
* plot size limits
(look up, or copy, this file to edit your own ’userdef’ file).

Example:
=========

section.sh sst.nc sst 3 1 3 60
if the first and second dimensions are longitude and

latitude, and the third is time, this will produce
a Hovmoller diagram of sst variability along latitude
node no. 60, based on results on the file ’sst.nc’

20

F LAYERSECTION.SH, SYNTAX

F. layersection.sh, syntax

NOTE: This script assumes that the variable to depict has been
stored with dimensions in the order x -y -layer(-time)

or lon-lat-layer(-time)
(w/ Fortran style sequence of dimensions).

Syntax:
=======

layersection.sh <hfile> <varfile> <hname> <varname> <dimname> <node> <time>
where

<hfile> name of netCDF file w/thickness results
<varfile> name of netCDF file w/requested variable

you may use ’.’ if both variables are on the same file
<hname> name of thickness variable
<varname> name of variable to depict

NOTE! This script requires the existence of an
attribute ’missing_value’ to <varname>

<dimname> name of crossection’s horizontal dimension
e.g., lat for a lat-z (meridional) crossection

<node> node of non-depicted dimension
if <dimname> is lat , this is the lon grid no.

<time> time step no. to depict (use 0 for x- y-z &
lon-lat-z fields)

a negative <time> value is interpreted as a flag that
stops the ncl script from being deleted

The script will produce an eps-file and a png-file.

User specifications:
====================

By copying the default spec.s from
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’layersection.sh’ is given,
the user may specify

* title
* zooming
* color map (palette)
* no. of colors
* plot size limits
(look up, or copy, this file to edit your own ’userdef’ file).

Examples:
=========

layersection.sh hycom_expt007.nc . thknss salin lat 30 49
will produce a lat-z crossection normal to longitude node no. 30,

of the variable ’salin’ on the file ’hycom_expt007.nc’,
w/ layers given by ’thknss’ on the same file,
from timestep no. 49

layersection.sh hycom_expt007.nc . thknss . lat 30 49
same as above, but here, thknss is requested; this is a

special case where the layer no. will be contoured
(the thickess will correspond to the distance between

layer interfaces)

21

G MLAYERSECTION.SH, SYNTAX

G. mlayersection.sh, syntax

NOTE: The user is **STRONGLY** recommended to copy
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’mlayersection.sh’ is given,
and at least specify

* color map (palette)
-otherwise, the series of files produced by mlayersection.sh

will (usually) NOT have the same color map (see more information below)

NOTE: This script assumes that the variable to depict has been
stored with dimensions in the order x -y -layer(-time)

or lon-lat-layer(-time)
(w/ Fortran style sequence of dimensions).

Syntax:
=======

mlayersection.sh <hfile> <varfile> <hname> <varname> <dimname> <node> <first> <last> (<step>)
where

<hfile> name of netCDF file w/thickness results
<varfile> name of netCDF file w/requested variable

you may use ’.’ if both variables are on the same file
<hname> name of thickness variable
<varname> name of variable to depict

NOTE! This script requires the existence of an
attribute ’missing_value’ to <varname>

<dimname> name of crossection’s horizontal dimension
e.g., lat for a lat-z (meridional) crossection

<node> node of non-depicted dimension
if <dimname> is lat , this is the lon grid no.

<first> first time step no.
<last> last time step no.
<step> time step between consequtive frames

(optional, set to 1 if not specified by user)

The script will produce a set of ppm-files.

User specifications:
====================

By copying the default spec.s from
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’mlayersection.sh’ is given,
the user may specify

* title
* zooming
* color map (palette)
* no. of colors
* plot size limits
(look up, or copy, this file to edit your own ’userdef’ file).

Example:
========

mlayersection.sh hycom_expt007.nc . thknss salin lat 30 47 49
will produce a lat-z crossection normal to longitude node no. 30,

of the variable ’salin’ on the file ’hycom_expt007.nc’,
w/ layers given by ’thknss’ on the same file,
from timestep no. 47, 48 and 49

22

H ADDLAYERS.SH, SYNTAX

H. addlayers.sh, syntax

addlayers.sh <option> <file> <variable> <firstlevel> <lastlevel> \
(<d4node>)

where
<option> specifies dimensions and geo- or nongeo-grid

implemented:
3d - 3D fields
4d - 4D fields
3dmap - 3D fields, first two dims. are lon & lat
4dmap - 4D fields, first two dims. are lon & lat
...3/4dmap will be displayed on a lon-lat grid

with a map
<file> name of the netcdf file
<variable> name of requested variable on the netcdf file

(case sensitive)
<firstlevel> this is the first vertical level no. in the addition
<lastlevel> this is the last vertical level no. in the addition
<d4node> node no. of fourth dimension (usually time)

The script will produce an eps-file and a png-file.

User specifications:
====================

By copying the default spec.s from
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’addlayers.sh’ is given,
the user may specify

* title
* zooming
* map projection (lon-lat grids only)
* color map (palette)
* no. of colors
* plot size limits
* coastline detail level
(look up, or copy, this file to edit your own ’userdef’ file).

Example:
========

addlayers.sh 4dmap hydrography.nc thknss 1 5 10
will produce a depiction on a lon-lat grid w/ a map,

of the sum of values for the variable ’thknss’ for
layers 1-5 from the tenth time step, provided that
the third and fourth dimensions are layer no. and
time, respectively. Values will be read from the
file ’hydrography.nc’

23

I VECTOR.SH, SYNTAX

I. vector.sh, syntax

vector.sh <option> <file> <u> <v> [<d3node> (<d4node>)]
where

<option> specifies dimensions and geo- or nongeo-grid
implemented:

2d - 2D fields
3d - 3D fields
4d - 4D fields
2dmap - 2D fields, dims. are lon & lat
3dmap - 3D fields, first two dims. are lon & lat
4dmap - 4D fields, first two dims. are lon & lat
...2/3/4dmap will be displayed on a lon-lat grid

with a map
<file> name of the netcdf file
<u> name of variable w/ velocity in the x-direction

on the netcdf file (case sensitive)
<v> name of variable w/ velocity in the y-direction

on the netcdf file (case sensitive)
<d3node> node no. of third dimension

if <option> is one of 2d, 2dmap and a fourth
argument is present, or if <d3node> is negative,
this will be interpreted as a flag that will cause
the ncl script to remain (see examples below)

<d4node> node no. of fourth dimension

The script will produce an eps-file and a png-file.

User specifications:
====================

By copying the default spec.s from
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’vector.sh’ is given,
the user may specify

* title
* zooming
* vector spec.s (size, distance, curly/regular vectors)
* map projection (lon-lat grids only)
* plot size limits
* coastline detail level
(look up, or copy, this file to edit your own ’userdef’ file).

Examples:
=========

vector.sh 4dmap hydrography.nc u v 1 10
will produce vectors on a lon-lat grid w/ a map, for

the first node in the third dimension (usually the top
vertical level) and the tenth node in the fourth
dimension (usually time step no. 10), based on
variables ’u’ and ’v’ on the file ’hydrography.nc’

vector.sh 3d surface.nc u-vel v-vel -1
will produce vectors on a x-y grid of the first node

in the third dimension, based on variables ’u-vel’ and
’v-vel’ on the file ’surface.nc’; and the ncl-script

will be retained
vector.sh 2dmap topography.nc ubaro vbaro a

will produce vectors on a lon-lat grid w/ a map,
based on variables ’ubaro’ and vbaro’ on the file
’topography.nc’; and the ncl-script will be retained

24

J SVECTOR.SH, SYNTAX

J. Svector.sh, syntax

Svector.sh <option> <file> <u> <v> <u_bt> <v_bt> [<d3node> \
(<d4node>)]

where
<option> specifies dimensions and geo- or nongeo-grid

implemented:
2d - 2D fields
3d - 3D fields
4d - 4D fields
2dmap - 2D fields, dims. are lon & lat
3dmap - 3D fields, first two dims. are lon & lat
4dmap - 4D fields, first two dims. are lon & lat
...2/3/4dmap will be displayed on a lon-lat grid

<file> name of the netcdf file
<u> name of variable w/ baroclinic velocity in the

x-direction on the netcdf file (case sensitive)
<v> name of variable w/ baroclinic velocity in the

y-direction
<u_bt> name of variable w/ barotropic velocity in the

x-direction
<v_bt> name of variable w/ barotropic velocity in the

y-direction
<d3node> node no. of third dimension

if <option> is one of 2d, 2dmap and a fourth
argument is present, or if <d3node> is negative,
this will be interpreted as a flag that will cause
the ncl script to remain

<d4node> node no. of fourth dimension

The script will produce an eps-file and a png-file.

User specifications:
====================

By copying the default spec.s from
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’Svector.sh’ is given,
the user may specify

* title
* zooming
* vector spec.s (size, distance, curly/regular vectors)
* map projection (lon-lat grids only)
* plot size limits
* coastline detail level
(look up, or copy, this file to edit your own ’userdef’ file).

Example:
========

Svector.sh 4dmap hydrography.nc u v u_btrop v_btrop 1 10
will produce vectors on a lon-lat grid w/ a map, of

the sums ’u’+’u_btrop’ and ’v’+’v_btrop’ in the
x- and y-directions, respectively; ’u’ and ’v’ will be
extracted at the first first node in the third dimension
(usually the top vertical level) and the tenth node in
the fourth dimension (usually time step no. 10),
whereas ’u_btrop’ and ’v_btrop’ are extracted at the
tenth node in their third dimension; all variables
will be read from the file ’hydrography.nc’

25

K MVECTOR.SH, SYNTAX

K. mvector.sh, syntax

NOTE: This script will provide a set of output files, where
the value of the final (3rd or 4th) dimension changes from
one output file to the next. Below, we assume that this
dimension is time.

Syntax:
=======
...if <option> is 4d or 4dmap:

mvector.sh <option> <file> <u> <v> <depth> <first> <last> (<step>)
...if <option> is 3d or 3dmap:

mvector.sh <option> <file> <u> <v> <first> <last> (<step>)
where

<option> specifies dimensions and geo- or nongeo-grid
implemented:

3d - 3D fields
4d - 4D fields
3dmap - 3D fields, first two dims. are lon & lat
4dmap - 4D fields, first two dims. are lon & lat
...3/4dmap will be displayed on a lon-lat grid

with a map
<file> name of the netcdf file
<u> name of variable w/ velocity in the x-direction

on the netcdf file (case sensitive)
<v> name of variable w/ velocity in the y-direction

on the netcdf file (case sensitive)
<depth> vertical level no.
<first> first time step no.
<last> last time step no.
<step> time step between consequtive frames

(optional, set to 1 if not specified by user)

The script will produce a set of pnm-files.

User specifications:
====================

By copying the default spec.s from
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’mvector.sh’ is given,
the user may specify

* title
* zooming
* vector spec.s (size, distance, curly/regular vectors)
* map projection (lon-lat grids only)
* plot size limits
* coastline detail level
(look up, or copy, this file to edit your own ’userdef’ file).

Example:
=========

mvector.sh 4dmap hydrography.nc u v 1 5 15 2
will produce vectors on a lon-lat grid w/ a map, of

the first vertical level and time steps no. 5, 7, 9, 11, 13 and 15,
based on variables ’u’ and ’v’ on the file ’hydrography.nc’

26

L TRANSPORT.SH, SYNTAX

L. transport.sh, syntax

NOTE: The user is **STRONGLY** recommended to copy
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’transport.sh’ is given,
and at least consider altering

* vector spec.
-otherwise, lengths of vector will be scaled as ocean currents

rather than a transport quantity

Syntax:
=======

transport.sh <option> <uvfile> <varfile> <u> <v> <var> [<d3node> \
(<d4node>)]

where
<option> specifies dimensions and geo- or nongeo-grid

implemented:
2d - 2D fields
3d - 3D fields
4d - 4D fields
2dmap - 2D fields, dims. are lon & lat
3dmap - 3D fields, first two dims. are lon & lat
4dmap - 4D fields, first two dims. are lon & lat
...2/3/4dmap will be displayed on a lon-lat grid

with a map
<uvfile> name of the netcdf file w/ <u> and <v>
<varfile> name of the netcdf file w/ <var>

you may type ’.’ if <uvfile> & <varfile> are the same
<u> name of variable w/ velocity in the x-direction

on the netcdf file (case sensitive)
<v> name of variable w/ velocity in the y-direction

on the netcdf file (case sensitive)
NOTE! special case: if <v> is set to 1 ,

speed is contoured
<var> name of variable to base filled contours on

on the netcdf file (case sensitive)
NOTE! This script requires the same dimensions for

<u>, <v> and <var>, i.e., they must all be
2d, or 2dmap, etc.

<d3node> node no. of third dimension
if <option> is one of 2d, 2dmap and a fourth

argument is present, or if <d3node> is negative,
this will be interpreted as a flag that will cause
the ncl script to remain (see examples below)

<d4node> node no. of fourth dimension

The script will produce an eps-file and a png-file.

NOTE! Unless a user spec. file exists, this script will give
rise to unreasonably long or short vectors if variable
values are of a different order than 1.

27

L TRANSPORT.SH, SYNTAX

User specifications:
====================

By copying the default spec.s from
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’transport.sh’ is given,
the user may specify

* title
* zooming
* vector spec.s (size, distance, curly/regular vectors)
* map projection (lon-lat grids only)
* color map (palette)
* no. of colors
* plot size limits
* coastline detail level
(look up, or copy, this file to edit your own ’userdef’ file).

Examples:
=========

transport.sh 2dmap uv.nc topography.nc ubaro_mean vbaro_mean depth
will produce transport vectors on top of filled contours

for the volume transport, on a lon-lat grid w/ a map,
based on variables ’ubaro’, vbaro’ on the file ’uv.nc’,
and ’depth’ on the file ’topography.nc’

transport.sh 4dmap hydrography.nc . u v temp 1 10
will produce transport vectors on top of filled contours

for temperature transport, on a lon-lat grid w/ a map,
for the first node in the third dimension (usually
the top vertical level) and the tenth node in the
fourth dimension (usually time step no. 10), based on
variables ’u’, ’v’ and ’var’ on the file ’hydrography.nc’

transport.sh 4dmap hydrography.nc . u v 1 1 10
special case (variable to contour is set to ’1’): will

produce velocity vectors on top of filled contours for
the current speed, for the first node in the third dimension
and the tenth node in the fourth dimension, on a lon-lat
grid w/ a map, based on variables ’u’ and ’v’ on the file
’hydrography.nc’

28

M V-ON-C.SH, SYNTAX

M. v-on-c.sh, syntax

v-on-c.sh <option> <uvfile> <varfile> <u> <v> <var> [<d3node> \
(<d4node>)]

where
<option> specifies dimensions and geo- or nongeo-grid

implemented:
2d - 2D fields
3d - 3D fields
4d - 4D fields
2dmap - 2D fields, dims. are lon & lat
3dmap - 3D fields, first two dims. are lon & lat
4dmap - 4D fields, first two dims. are lon & lat
...2/3/4dmap will be displayed on a lon-lat grid

with a map
<uvfile> name of the netcdf file w/ <u> and <v>
<varfile> name of the netcdf file w/ <var>

you may type ’.’ if <uvfile> & <varfile> are the same
<u> name of variable w/ velocity in the x-direction

on the netcdf file (case sensitive)
<v> name of variable w/ velocity in the y-direction

on the netcdf file (case sensitive)
<var> name of variable to base filled contours on

on the netcdf file (case sensitive)
NOTE! This script requires the same dimensions for

<u>, <v> and <var>, i.e., they must all be
2d, or 2dmap, etc.

<d3node> node no. of third dimension
if <option> is one of 2d, 2dmap and a fourth

argument is present, or if <d3node> is negative,
this will be interpreted as a flag that will cause
the ncl script to remain (see examples below)

<d4node> node no. of fourth dimension

The script will produce an eps-file and a png-file.

User specifications:
====================

By copying the default spec.s from
/usr/local/selfmade/ncl/userdef.ncl

to the directory where the command ’v-on-c.sh’ is given,
the user may specify

* title
* zooming
* vector spec.s (size, distance, curly/regular vectors)
* map projection (lon-lat grids only)
* color map (palette)
* no. of colors
* plot size limits
* coastline detail level
(look up, or copy, this file to edit your own ’userdef’ file).

29

N MAKEMOVIE.SH, SYNTAX

Examples:
=========

v-on-c.sh 4dmap uv.nc hydrography.nc u v temp 1 10
will produce vectors on top of filled contours for

temperature, on a lon-lat grid w/ a map, of the first node
in the third dimension (usually the top vertical level)
and the tenth node in the fourth dimension (ususally time
step no. 10) based on variables
’u’ and ’v’ on the file ’uv.nc’, and
’temp’ on ’hydrography.nc’

v-on-c.sh 3d surface.nc . u-vel v-vel ssh -1
will produce vectors on top of filled contours for

sea surface height, on a x-y grid of the first node in
the third dimension, based on variables ’u-vel’, ’v-vel’
and ’ssh’ on the file ’surface.nc’; and the ncl script
will be retained

v-on-c.sh 2dmap ave.nc topography.nc ubaro vbaro topo a
will produce vectors on top of filled contours for

the bottom topography, on a lon-lat grid w/ a map,
based on variables
’ubaro’ and ’vbaro’ on the file ’ave.nc’, and
’topo’ on ’topography.nc’;
the ncl script will be retained

N. makemovie.sh, syntax

makemovie.sh will convert a set of pnm files to an animation,
either in the mpeg format or in the fli format

Syntax:
=======

makemovie.sh <format> <file root> <first> <last> (<step>)
where

<format> is the animation format,
either mpeg or fli

<file root> is the file root, i.e. the file name without
the frame no. and suffix
(if salt0001.png - salt0012.png is to be

animated, the file root is ’salt’)
<first> first time step no.
<last> last time step no.
<step> time step between consequtive frames

(optional, set to 1 if not specified by user)

Examples:
=========

makemovie.sh fli salt 19 30
will make a fli movie salt.fli w/ 12 frames, based on images

salt0019.pnm, salt0020.pnm, ..., salt0030.pnm

makemovie.sh mpeg temp 12 120 12
will make a mpeg movie temp.mpg w/ 10 frames, based on images

temp0012.pnm, temp0024.pnm, ..., temp0120.pnm

30

	Introduction
	Installation
	Filled contours
	Vectors
	Filled contours and vectors
	Miscellaneous scripts
	Modifying the ncl scripts
	Title
	Zooming
	Plot size
	Contouring specifications
	Vector specifications
	Color map (palette)
	Map projection
	Coastline details

	Error messages
	contour.sh, syntax
	Dcontour.sh / Scontour.sh, syntax
	mcontour.sh, syntax
	c-mask.sh, syntax
	section.sh, syntax
	layersection.sh, syntax
	mlayersection.sh, syntax
	addlayers.sh, syntax
	vector.sh, syntax
	Svector.sh, syntax
	mvector.sh, syntax
	transport.sh, syntax
	v-on-c.sh, syntax
	makemovie.sh, syntax

