Exchange of water masses between the outer and inner branch of the Norwegian Atlantic current in the Svinøy section Preliminary results from MICOM

K. Richter

Geophysical Institute University of Bergen

iAOOS workshop, 31 August - 2 September 2009

Outline

Introduction

- Motivation
- The model

2 Re

Results

- Volume transports
- Volume transport variability

Summary

Motivation

- NwAC: two distinct branches
- Atlantic water meets colder, less saline water in the Iceland Faroe Front

[Furevik and Nilsen, 2005]

-

MICOM CONF33

Grid, bathymetry and sections

The model:

- isopycnic coordinates
- 35 vertical layers
- forced with NCEP
- resolution: 10-20 km in northern North Atlantic

Atlantic inflow and Norwegian Atlantic current

Atlantic water masses: T>5 $^{\circ}$ C, S>35

• large anticorrelation not caused by anticorrelation of inflow

Comparison with observations

• good agreement due to seasons

1

Relation to NAO

• relation between NAO and inflow is time-dependent

What causes positive and negative volume transport anomalies through the Svinøy section?

anomaly: deviation from the long term mean (> 1 std)

- Eastern branch (EB):
 - positive anomalies mainly in winter
 - seasonal amplitude pprox 1.2 Sv
 - seasonal maximum in winter
- Western branch (WB):
 - anomalies evenly distributed through seasons
 - seasonal amplitude pprox 0.5 Sv
 - seasonal maximum in autumn

★ ∃ ►

What causes positive and negative volume transport anomalies through the Svinøy section?

anomaly: deviation from the long term mean (> 1 std)

- Eastern branch (EB):
 - positive anomalies mainly in winter
 - seasonal amplitude pprox 1.2 Sv
 - seasonal maximum in winter
- Western branch (WB):
 - anomalies evenly distributed through seasons
 - seasonal amplitude pprox 0.5 Sv
 - seasonal maximum in autumn

Seasonal amplitude and phase

variability due to variability of inflow (mainly FSC) and exchange of water masses

(E) < E)</p>

variability due to variability of inflow (mainly FSC) and exchange of water masses

 variability due to variability of inflow (mainly FSC) and exchange of water mass within the NwAC

-

 variability due to variability of inflow (mainly FSC) and exchange of water masses within the NwAC

Composites: mixed layer velocity anomaly

 exchange of water masses between the two branches in the area of the Svinøy section

Composites: layer14 velocity anomaly

- exchange of water masses between the two branches in the area of the Svinøy section
- increased/decreased strength of the inflowing current over the IFR

Composites: wind stress anomaly

- strength of westerlies controls slope current
- northeasterly winds favor Western branch

K. Richter (GFI)

Composites: cross-section velocity and density anomaly, and ssh anomaly

• domain occupied by Atlantic water varies considerably

• variability of currents reflected in sea level anomaly

Summary

- relation with NAO (i.e. wind stress curl) seems time dependent
- Volume flux variability through the Svinøy section governed by variability of the inflow and exchange processes between the two branches of the NwAC
- related to the bifurcation of Faroe branch? Model does not show significant link to recirculation of FB in the FSC
- monitoring the two branches by means of sea level observations?

Volume transport from sea level observations?

Volume transport from sea level observations?

• 17 tidegauges along the norwegian coast

- sealevel $\eta = \eta_{BT} + \eta_{BC}$
- find propagating signals (baroclinic and barotropic) by means of Singular Spectrum Analysis?

Additional

K. Richter (GFI)

Water mass exchange in the NwAC

iAOOS 2009 17 / 22

Additional

Mean velocity in Atlantic water layers

K. Richter (GFI)

iAOOS 2009 18 / 22

ъ

-

Sea surface salinity

K. Richter (GFI)

문 문 iAOOS 2009 19 / 22

-

Temperature anomalies

K. Richter (GFI)

iAOOS 2009 20 / 22

Additional

Salinity anomalies

EOF-analysis of cross-section velocity

yearly vperp - interpolated on a regular grid and detrended

K. Richter (GFI)