

Barotropic instability in the West Spitsbergen Current

"Reading the pulse of the Barotropic WSC branch"

S. H. Teigen and F. Nilsen The University Centre in Svalbard

01.09.2009 – NwAC Workshop, NPI, Tromsø.

Outline

- 1. Introduction
- 2. Data set
- 3. Linear stability analysis
- 4. Time series analysis
 - Application of linear stability analysis
 - Wavelet analysis
 - Spatial coherence and complex demodulation
 - Heat flux calculations
 - Summary

Introduction Regional setting

Introduction Cooling of the slope current

Table 1. Long-term mean northward along-slope gradients in temperature (dT^*/dy) and salinity (dS^*/dy) in the upper-slope domain. A nominal current speed (v) of 0.1 and 0.2 m s⁻¹, based on Fahrbach et al. (2001), are used in summer and winter, respectively, to calculate the depth-integrated mean heat loss rates Q^*_a (Eq. 2) for the water column illustrated in Fig. 6.

Saloranta and Haugan

(2004)

	Layer, $z_1 - z_2$ (m)	<i>dT*/dy</i> (°C/100 km)	<i>dS*/dy</i> (psu/100 km)	$Q^*_{a}(W)$
Summer	0-100	-0.32	-0.028	-130
	100-500	-0.20	-0.010	-330
	0-500	-0.22	-0.013	-460
Winter	0 - 100	-0.42	-0.025	-350
	0-250	-0.40	-0.016	-830
	100-500	-0.31	-0.004	-1050
	0-500	-0.34	-0.008	-1400

Q

111 ///

Data set Map of Fram Strait (east) mooring section The University Centre in Svalbard

- AWI's array of seven current meter moorings (F1 to F7)
- Additional shelf
 break mooring, F0
 2007-2008

Data set

Progressive vector diagrams from 200-250 m depth, 2007-2008

Linear stability analysis Mathematics

- A necessary condition for instability is that potential vorticity, q, attains a local extremum within the domain

$$\bar{q} = \frac{f - \frac{\mathrm{d}\bar{v}}{\mathrm{d}x}}{h}$$

Assume small perturbations to a steady, along-shelf

$$u = u',$$

$$v = \bar{v} + v',$$

$$\eta = \bar{\eta} + \eta',$$

Linear stability analysis Mathematics

• We search for normal modes on the form

$$u' = \hat{u}(y)\cos(kx - \omega t)$$
$$v' = \hat{v}(y)\sin(kx - \omega t)$$
$$\eta' = \hat{\eta}(y)\cos(kx - \omega t)$$

- Inserted into the shallow water equations, this results in a matrix eigenvalue problem that can be solved numerically for a specified bottom topography and current profile
 - For complex ω , the solution is unstable, with growth rate (e-folding time) $\tau = 1/\omega_i$

Linear stability analysis Idealized topography (double tanh) and current profile (skew gaussian jet)

Time series analysis Diagnostics of fitted skew jet

Time series analysis Wavelet analysis

Wavelet power spectrum of UC at F0, 205 m depth

4760474-7748-776

4760474-12780-1376

4760474-72480-776

4760474724804766

Time series analysis Unstable event, 17-feb-2008

0.6

0.4

Surface elevation [cm]

-0.4

-0.6

-0.8

Time series analysis Sensitivity analysis

- Halfwidth
 B = 10km
 (const)
 - Systematic variation of position (L_B) and amplitude (v_{max}) of skew jet

Time series analysis Sensitivity analysis

- Halfwidth
 B = 18 km
 (const)
 - Systematic variation of position (L_B) and amplitude (v_{max}) of skew jet

Time series analysis Rossby number

Time series analysis Rotary spectra

- The wave period 48h shows up with a significant response in the inner and outer (not shown) coherence spectra between F0 and F1
 - Close to the mean period (52h) of unstable waves estimated from linear stability analysis

Time series analysis Complex demodulation/heat flux estimates

- Based on the demodulated temperature around 48h and the rotating wave field, the across slope eddy heat flux is estimated
 - Two episodes, with heat fluxes 1000-2000 W/m²

Summary and conclusions

- The barotropic WSC branch exhibits an asymmetric current profile, resulting in a sharp shear on the shelf side
- Linear stability analysis of the timeseries at F0-F3 indicates that unstable events are possible, dominantly during the winter months
- Wavelet, rotary spectra and complex demodulation confirm that oscillations matching the wave period preditcted by linear stability analysis are present at significant levels
 - The heat loss associated with this process can reach O(1000W/m²)

Questions? Comments?

