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Empirical-Statistical Downscaling

The present results were obtained using a similar
common empirical orthogonal function framework as
Benestad [2002b] (referred to as ’B2002b’), but us-
ing a stepwise multiple regression for single sites as
opposed to a canonical correlation analysis (CCA) -
based model for a set of locations. The predictor used
for calibration against the local temperature was the
monthly mean large-scale T(2m) anomalies from the
ERA40 re-analyses [Simmons et al., 2004]. Hence, the
present analysis used ERA40 for predictor calibration,
as opposed to the 1873–1998 gridded analysis [Ben-

estad, 2000] used to derive the B2002b results. The
corresponding predictor for local precipitation was the
total precipitation from the ERA40, whereas B2002b
used sea level pressure (SLP) as a predictor. The E-
SDS was carried out using a tool called ’clim.pact’
[Benestad, 2004a] (version 2.1-5), written for the R-
environment [R Development Core Team, 2004]. Note
that the clim.pact package is open source and freely
available from CRAN (http://cran.r-project.org), and
the method is described in a number of earlier publica-
tions [Benestad, 2004a; and references therein].

Whereas the B2002b empirical-statistical downscal-
ing (E-SDS) analysis used a fixed set of predictor do-
mains common for all stations studies, the present anal-
ysis selected the predictor domain on an individual sta-
tion basis based on the criterion that the predictor re-
gion should only encompass the region where the large-
scale anomaly field is positively correlated with the local
variable [Benestad, 2004a]. Once the domain was deter-
mined for a given location, the GCM results were inter-
polated to the observed (here ERA40 re-analysis) grid
for this domain, and its anomalies concatinated with
those of the observations. Then an empirical orthogonal
function (EOF) [Lorenz, 1956] analysis was applied to
the combined data set (common EOF, [Barnett, 1999]),
and the EOF products were used for E-SDS model cal-
ibration and prediction. This method is evaluated and
described in further detail by Benestad [2001]. The ob-
servations were de-trended prior to model calibration
and a stepwise screening using the Akaike information
criterion (AIC, [Wilks, 1995], p.301-302) was used to
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exclude non-important principal components and hence
avoid so-called over-fit. In clim.pact, this objective
downscaling approach is implemented by the function
’objDS’ [Benestad, 2004a]. The downscaling was ap-
plied separately to single series for one given station
(in B2002b the downscaling was applied to groups of
stations simultaneously using CCA and cross-validation
instead of stepwise regression for a single location) and
a given calendar month. The annual series for each lo-
cation was constructed from 12 individual downscaling
exercises in order to represent all calendar months. No
form for so-called ’inflation’ [von Storch, 1999] was ap-
plied.

The calibration period in the present analysis is short
relative to the prediction interval (1958–2002 for Nor-
wegian stations updated with data from the national
archive, 1958–1999 for Nordklim and NARP stations,
and 1958–1990 for NACD stations), and the spatial
EOF patterns may therefore be governed by GCMs
rather than the observations, unless other measures are
introduced. In order to ensure that the observed spa-
tial patterns dominate the EOF products, the GCM
data were scaled down (multiplication with a = 0.25 ×
nERA40/nGCM, where nERA40 is the ERA40 record length
and nGCM the GCM record length) prior to the EOF
analysis, and subsequently re-scaled to describe the
original variance before the stepwise regression anal-
ysis. A set of tests was conducted to check whether
the scaling process produced significant differences of
adverse effect, but the results were similar to the un-
scaled analysis for selected locations and GCM (not
shown). The motivation for using a scaling factor of
0.25 is to avoid splitting the ERA40 and GCM into
different modes (principal components) if the spatial
structure differ substantially.

Quality control

E-SDS incorporates a form of quality control by re-
quiring similar spatial structures on anomalies in the
observations and the GCM. Post-process quality control
based on the E-SDS diagnostics involved comparisons
between the spatial weight patterns from the stepwise
regression analysis and the correlation maps between
large-scale anomalies and the local variable. In this
case, a spatial correlation rxy(month) was estimated
between these two types of maps for each calendar
month, assuming that they are similar for a realistic
regression and when the spatial modes in the GCMs
look like those in the ERA40 data. Another criterion
was that the linear trend estimates for the individual
months should change smoothly over the 12 calendar
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months. An index of unrealistic trend ’spikes’ was de-
fined as nm = 1−1/12

∑12

i=1
H(3s−mi), where mi is the

difference between the linear trend for calendar month
i ∈ [1, 12] and subsequent month, s is the standard de-
viation of the trend differences, and H() is the Heaviside
function. Further quality diagnostics included flagging
(fs) if the summer temperature variability is more pro-
nounced than winter variability (fs = H(sjja − sdjf )),
or lower summer temperatures than in winter, spring
and autumn and whether the winters are colder than
the other seasons (fm = H(xjja − xdjf )). Additional
quality indices can be extracted from the E-SDS re-
gression R2 statistics, and was here defined as the
number of nR2<0.6 =

∑12

i=1
H(R2

i − 0.6) for the R2-
statistic of month i. Further quality-control models in-
cluded the number of cases np>0.1 where the regres-
sion p-value1 exceeds 0.1, number of cases with nega-
tive temperature trend nm<0 (i.e. cooling), and tests
whether the predictor domain is very large (when lon-
gitude range exceeds 90◦E or latitude range exceeds
40◦N) or small (longitude range < 20◦E or latitude
range < 10◦N), flag denoted as D. Unrealistically large
or small domains may be an indication of problems as-
sociated with the automatic determination of the op-
timal domain. Benestad [2002a] showed that large do-
mains encompassing both regions with positive and neg-
ative correlation, such as the North Atlantic Oscilla-
tion (NAO) seesaw, can produce spurious results. A
final quality test involved checking whether the down-
scaled results had realistic variance by comparing the
downscaled results obtained by the ERA40 to that of
the GCM. The flag fvar = 1/24(

∑12

i=1
H[s(ERA40) −

0.5s(GCM)] + 1/12
∑12

i=1
H[s(GCM) − 1.5s(ERA)]) indi-

cates mismatch between the downscaled results from
the re-analysis and from GCM, s here being the stan-
dard deviation of the downscaled results. These quality-
control models are by no means objective and only give
a crude indication about the GCM qualities. Thus,
these should only be regarded as ’rule-of-thumb’ indi-
cation about the GCM’s ability to describe the tem-
perature or precipitation over northern Europe. The
quality indeces fs, fm and nm<0 were only applied to
temperature. The final weighting for each station i
was taken as wi = 1/9

∑M

j=1
(rxy + nm + fs + fm +

nR2<0.6+np>0.1+nm<0+D+fvar) for temperature and

wi = 1/6
∑M

i=j(rxy+nm+nR2<0.6+np>0.1+D+fvar) for
precipitation, summing over the multi-model ensemble
size M = 23 for temperature and M = 21 for precipi-
tation (auxiliary Table 2).

1http://en.wikipedia.org/wiki/P-value
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Auxiliary Table 3 shows the results of quality con-
trol based on the E-SDS diagnostics for the tempera-
ture. According to these indices, the UKMO-HadCM3,
CCSM-2.0, MRI, IPSL, GISS-AOM, CNRM and the
INM-CM3.0 were flagged for a high rate (∼10–20%)
with too high summer variance. All models had a low
rate with unrealistic seasonal mean temperatures (fm),
but GISS-AOM and CCSM-2.1 were flagged with up
to 37% cases with negative temperature trends (nm<0).
Only GISS-ER was flagged with high number of weak
regression (nR2<0.6), whereas np>0.1 and D was rea-
sonably low for all GCMs. Several models had prob-
lems with describing realistic variance, with MRI the
worst(fvar ∼ 50%). IPSL, NCAR-PCM, and GFDL-
2.x had relatively few cases with calibration-prediction
variance mismatch. The spatial correlation score was
similar for most models (rxy ∼40–46%) and only IN-
MCM3 indicated significantly erratic seasonal evolu-
tion of trend estimates (nm ∼ 7.5%). The threshold
value (sensitivity) for setting these flags has been set
fairly arbitrarily which means that some weights con-
tribute more to the overall weighting scheme than oth-
ers. Hence, the flags with higher number of cases, such
as rxy, fs and fvar tend to be more important than the
others for deriving the map products.

Auxiliary Figures 1–2 show time series plots of the
(unweighted) downscaled multi-model results for both
the 20th and 21st (SRES A1b) centuries. The shaded
areas show the inter-model spread and the lines show
3rd-order polynomial trend fits [Benestad, 2003] to
the multi-model median. The downscaled tempera-
tures for the 20th century (auxiliary Figure 1) show
a good agreement with the corresponding observed val-
ues, fulfilling the minimum requirement that the anal-
ysis must provide a reasonable description of the past
trends [Benestad, 2003]. Furthermore, the inter-model
spread is smaller than the long-term increase, suggest-
ing a reasonably high signal-to-noise ratio. The compar-
ison between E-SDS results for the precipitation for the
past and observations suggests that the analysis does
not capture as much of the variability as for tempera-
ture. Hence, the magnitude of the positive precipitation
trends seen for the future are likely to be underesti-
mated. The signal-to-noise ratio for precipitation tends
to be much smaller than for temperature, as the long-
term change is comparable to the inter-model spread.

Mapping

The mapping of the results was based on similar
analysis as in Benestad [2004b]. Multi-model ensem-
ble wi quality-weighted mean linear trends for annual
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mean values over the period 2000–2099 were estimated
for each station location, thus providing a Bayesian-
type quality-weighted trend estimate. The technique
used in present analysis differs from that of Benes-

tad [2004b] by using the square-root distance from the
coast (

√
d) as opposed to a linear relation with distance,

and including two additional geographical predictors:
north–south slope and east–west slope (Auxiliary Ta-
ble 3). The east–west and north–south slopes were es-
timated through a stepwise multiple regression fit to
Nθ = Nφ = 35 harmonics to the topographical cross-
section profile following equation (1) and then solving
for the derivatives according to equation (2). Only the
locations on the European continent (marked with grey
symbols) were used in calibrating the GRM, but trend
estimates for islands in the Norwegian Sea, Iceland, and
Greenland are given as numbers in Figures 1–2.

z(θ) = z0 +

Nθ
∑

i=1

[aθ(i) cos(ωθ(i)θ) + bθ(i) sin(ωθ(i)θ)],

z(φ) = z0 +

Nφ
∑

i=1

[aφ(i) cos(ωφ(i)φ) + bφ(i) sin(ωφ(i)φ)], (1)

∂ẑ(θ)

∂θ
=

Nθ
∑

i=1

ωθ(i)[−âθ(i) sin(ωθ(i)θ) + b̂θ(i) cos(ωθ(i)θ)],

∂ẑ(φ)

∂φ
=

Nφ
∑

i=1

ωφ(i)[−âφ(i) sin(ωφ(i)φ) + b̂φ(i) cos(ωφ(i)φ)], (2)

Since, spherical coordinates were used, a transforma-
tion was done to x- and y-coordinates following equation
(3).

dp̂(x)

dx
=

1

a cos(φ)

dp̂(θ)

dθ
,

dp̂(y)

dy
=

1

a

dp̂(φ)

dφ
, (3)

The harmonics fit, differentiation, and transforma-
tion was done in the R-environment, using the geoGrad

function in the contributed cyclones-package (version
1.1-4). Both the R-environment and cyclones are open
source and freely available from http://cran.r-project.org
(henceforth referred to as ’CRAN’).

Auxiliary Table 4 shows the ANOVA of the geograph-
ical regression model (GRM) for both temperature and
auxiliary Table 5 for precipitation. The use of ANOVA
tables is a standard way of assessing regression mod-
els in statistics, where high R2 scores, F-ratios and
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low p-values indicate strong and significant relation-
ships [Wilks, 1995, p. 165–169]. The R2 obtained for
the annual mean T(2m) trend was 66%, an F-ratio of
32.2 and a p-value of 5×10−15, all showing a strong re-
lationship. Only the parameters identified as important
are shown in Auxiliary Table 4–5, suggesting that the
local annual mean temperature trend is not strongly
influenced by e.g. the north–south slope. The corre-
sponding statistical relationship for precipitation was
weaker, however, still statistically significant to a high
degree: 33% of the precipitation trends, F-ratio=10.8,
and p-value of 4×10−7.

The GRMs can be assessed further in split-sample
tests, where part of the data was used for model cali-
brating (dependent) and the rest as independent data
for evaluation [Benestad, 2004c]. Auxiliary Figures 3–
4 show scatter plots between the original data and the
predicted values for both the dependent (grey) and in-
dependent data (black) and provide a verification of the
GRM.

A kriging analysis [Matheron, 1963] was applied to
the residuals of the GRM in order to spatially interpo-
late the part of the trends that could not be related to
geographical parameters (using the geoR-package from
CRAN). Kriging is a standard method used for spatial
interpolation in geo-sciences, and an evaluation of the
kriging methodology is outside the scope of this paper.
Whereas Benestad [2004b] used longitude and latitude
as two independent variables representing the coordi-
nates, the present analysis east–west and north–south
displacements from the central point of the set of loca-
tions, in units of 10km. Due to the Earth’s curvature,
a difference of one degree at high latitudes corresponds
to a smaller zonal displacement than at lower latitudes.

Digital data

The two maps presented in present paper are avail-
able digitally and stored as netCDF files in which the
values represent the trends in the units ◦C/decade and
mm/month per decade (file names: ’Europe E-SDS t2m-
trend map.nc’ & ’Europe E-SDS t2m-precip map.nc’).
The weighted multi-model ensemble mean trends for
the station locations are also available in ASCII format
(file names: ’Europe E-SDS t2m-trend tab.txt’ & ’Eu-
rope E-SDS t2m-precip tab.txt’).

To give an idea of the scale of the analysis presented
here, the grand total number downscaling exercises, i.e.
the number of different combination of calendar month,
location, scenario (20th century & SRES A1b), GCM
and run, was 12×8934 for temperature and 12×8657 for
precipitation (the analysis takes a couple of weeks on an
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ordinary Linux PC). The quality control and mapping
analysis come on top of this downscaling analysis.
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Table 1. Summary of the GCMs used to simulate future climates following the SRES A1b emission scenario.
The GCM results were taken from PCMDI.

Centre Country GCM reference
National Center Atm. Research USA CCSM3 [Blackmon et al, 2001]
Météo-France and France CNRM-CM3 [Déqué et al., 1994]
Centre National de Recherches Météo.
Max Planck Inst. Meteorology Germany ECHAM5/MPI-OM [Giorgetta et al., 2002]
US Dept. Commerce, NOAA and USA GFDL-CM2.0 [Delworth et al, 2004]
Geophysical Fluid Dynamics Lab (GFDL)
NOAA and GFDL USA GFDL-CM2.1
NASA / Goddard Inst. for Space Studies USA GISS-AOM [Russell et al., 1995]
NASA / Goddard Inst. for Space Studies USA GISS-EH [Schmidt et al., 2004]
NASA / Goddard Inst. for Space Studies USA GISS-ER [Lucarini and Russell, 2002]
Inst. Numerical Mathematics Russia INM-CM3.0 [Diansky and Volodin, 2002]
Institut Pierre Simon Laplace France IPSL-CM4 [Dufresne and Friedlingstein, 2000]
National Inst. Env. Studies
and Frontier Res. Center Glob. Change
Meteor. Research Institute Japan MRI-CGCM2.3.2 [Kitoh et al., 1995]
National Center Atm. Research USA PCM [Kiehl and Gent, 2004]
UK Met Office / Hadley Centre UK UKMO-HadCM3 [Gordon et al., 2000]

Table 2. Number of different GCM
runs used in the multi-model ensem-
ble.

GCM Run mGCM

Temperature
CNRM-CM3 1 1
GFDL-CM2.0 1 1
GFDL-CM2.1 1 1
GISS-AOM 1,2 2
GISS-EH 1–3 3
GISS-ER 4 1
INM-CM3.0 1 1
IPSL-CM4 1 1
ECHAM5/MPI-OM 1–3 3
MRI-CGCM2.3.2 1–5 5
CCSM3 1,2 2
PCM 2 1
UKMO-HadCM3 1 1

23

Precipitation
CNRM-CM3 1 1
GFDL-CM2.0 1 1
GISS-AOM 1,2 2
GISS-EH 1–3 3
GISS-ER 4 1
INM-CM3.0 1 1
IPSL-CM4 1 1
ECHAM5/MPI-OM 1,3 2
MRI-CGCM2.3.2 1–5 5
CCSM3 1,2 2
PCM 2 1
UKMO-HadCM3 1 1

21
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Table 3. Results from quality-control for GCMs with SRES A1b results for T(2m). The values
are given in %.

GCM fs fm nm<0 nR2<0.6 np<0.1 D fvar rxy nm N∗

CNRM-CM3 10.34 0.57 4.02 8.05 2.30 4.885 46.265 45.98 1.72 174
GFDL-CM2.0 4.60 0.57 0.57 7.47 2.30 4.885 20.405 43.68 0.57 174
GFDL-CM2.1 5.78 0.00 16.76 7.51 2.31 4.915 29.190 43.93 1.73 173
GISS-AOM 15.52 0.29 29.60 7.18 1.72 4.885 49.715 44.83 0.57 348
GISS-EH 3.26 0.19 6.32 6.90 2.30 4.885 34.005 41.38 0.57 522
GISS-ER 5.75 0.00 2.87 10.34 2.87 4.885 46.550 43.10 1.72 174
INM-CM3.0 17.82 0.57 0.57 7.47 2.30 4.885 41.380 44.83 7.47 174
IPSL-CM4 16.67 0.00 1.15 6.90 2.30 4.885 25.575 44.83 0.00 174
ECHAM5/MPI-OM 13.63 0.38 0.77 7.49 2.69 4.895 42.805 47.60 0.77 521
MRI-CGCM2.3.2 16.91 0.57 0.00 6.97 2.29 4.855 50.345 45.03 1.37 875
CCSM3 18.29 0.57 0.57 7.14 2.29 4.855 43.430 45.14 1.43 350
PCM 0.57 0.57 1.14 7.43 2.29 4.855 29.145 41.71 0.57 175
UKMO-HadCM3 23.43 0.57 1.14 6.86 2.29 4.855 41.715 45.71 0.00 175

Table 4. A summary of the multiple regression used to model the
geographical distribution of the annual mean temperature warming
rate. The values of the residuals were in the range -0.098–0.19, with
a residual standard error of 0.0452. The multiple R2 was 0.6578 (ad-
justed R-squared: 0.6374), the F-statistic= 32.2 on 4 and 67 degrees
of freedom, and the p-value= 5×10−15. The significance codes in the
sixth columns are for p-values 0 (‘***’), 0.001 (‘**’), and 0.01 (‘*’).

Coefficients:
Estimate ± Std. Error t value Pr(> |t|) Signif.

(Intercept) (2.261 ± 0.100)×10−1 22.598 < 2e-16 ***
√

dist (10 km) (1.020 ± 0.612)×10−2 1.668 0.1000
z (m) (1.321 ± 0.593)×10−4 2.224 0.0295 *
y (10 km) (3.749 ± 1.424)×10−4 2.634 0.0105 *
x (10 km) (5.997 ± 1.326)×10−4 4.523 2.55e-05 ***

Table 5. Same as Table 4, but for preciptation trends. The resid-
ual standard error is 0.2339 on 87 degrees of freedom, with a range
of -0.5780295 – 0.8590512, the multiple R2 was 0.3312 (Adjusted
R2: 0.3005), F-statistic= 10.77 on 4 and 87 DF, and the p-value=
4×10−7.

Coefficients:
Estimate ± Std. Error t value Pr(> |t|) Signif.

(Intercept) (5.351 ± 0.255)×10−1 20.966 < 2e-16 ***
y (10 km) (8.620 ± 5.595)×10−5 1.541 0.12702
x (10 km) (1.899 ± 0.614)×10−4 3.096 0.00264 **
dz/dy (m/m) (1.822 ± 0.625)×104 2.916 0.00451 **
dz/dx (m/m) (5.835 ± 4.066)×103 1.435 0.15485
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Figure 1. Plume plots showing the E-SDS results
for the 20th century (grey) and 21st century (blue) to-
gether with the actual observations (black points). The
darker grey/blue regions mark the multi-model inter-
quartile range whereas the lighter regions show the 5%–
95% range. The thick line is a 3rd order polynomial
trend fit to the multi-model median. Panel (a) shows
the E-SDS results for Oslo, panel (b) for Bergen and
panel (c) for Tromsø.

Figure 1. Plume plots showing the E-SDS results for the 20th century (grey) and 21st century (blue) together
with the actual observations (black points). The darker grey/blue regions mark the multi-model inter-quartile
range whereas the lighter regions show the 5%–95% range. The thick line is a 3rd order polynomial trend fit
to the multi-model median. Panel (a) shows the E-SDS results for Oslo, panel (b) for Bergen and panel (c) for
Tromsø.

Figure 2. Same as Figure 1, but for precipitation.

Figure 2. Same as Figure 1, but for precipitation.

Figure 3. Split-sample evaluation of the GRM for
temperature, where half of the data was used for model
calibration (dependent) and the remaining as indepen-
dent data for verification.

Figure 3. Split-sample evaluation of the GRM for temperature, where half of the data was used for model
calibration (dependent) and the remaining as independent data for verification.

Figure 4. Same as Figure 3, but for precipitation.

Figure 4. Same as Figure 3, but for precipitation.
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