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[1] An empirical-statistical downscaling analysis for
monthly mean temperature and precipitation is presented
for a multi-model ensemble of the most recent climate
scenarios (Special Report Emission Scenario A1b)
produced for the upcoming Intergovernmental Panel on
Climate Change (IPCC) Assessment Report 4 (AR4). The
analysis involves a model evaluation by incorporating
common EOF analysis, where the degree of similarity
between the spatial structure of large-scale anomalies in
re-analysis products and the climate models is examined.
The empirical-statistical downscaling incorporates local
information for a given set of locations, however,
additional geographical information is utilised in the
spatial interpolation of the results. A best-estimate of
trend is derived through a Bayesian approach. Thus, maps
of multi-model mean scenarios for annual mean
temperature and precipitation rates for the 21st century
are obtained. Positive trends are found in both
temperature and precipitation over northern Europe.
Citation: Benestad, R. E. (2005), Climate change scenarios

for northern Europe from multi-model IPCC AR4 climate

simulations, Geophys. Res. Lett., 32, L17704, doi:10.1029/

2005GL023401.

1. Introduction

[2] Empirical-statistical downscaling (E-SDS) analysis
offers several advantages over direct global climate model
(GCM) output or nested model output based on regional
climate models (RCM). In regions with complex
physiography, e.g. high mountains, heterogeneous
vegetation and landscape structures, deep valleys and fjords,
there are often pronounced small-scale structure in
climatic variables such as temperature and rainfall. For
instance, there are marked differences in the rainfall
pattern of the west- and east-facing slopes of the
north – south running mountain ranges in southern
Norway, where the former receives abundant amounts
of rain and the latter tends to be in the ‘rain shadow’.
Even within the capital of Norway, Oslo, there are
significant temperature differences between ‘Bygdøy’ at
the fjord level and ‘Tryvann’ only a few km away but at
512 m a.s.l.. GCMs with grid-box scales typical of
100 km are therefore not capable of resolving such
small-scale structures, and Benestad [2002, hereinafter
referred to as B2002] provided a demonstration of how
GCMs fail to represent the local climate. Impact studies do

require information on a local level, and hence
downscaling of GCMs of some form. However, RCMs
with a spatial resolution of 10–50 km may not suffice
where the physiography is most complex, leaving E-SDS
as the most appropriate approach.
[3] E-SDS has some additional advantages as it involves

an analysis that gives diagnostics which can be used to
assess the GCM skill and the degree of realism [Benestad,
2004a]. Since E-SDS is relatively quick and cheap to carry
out, it can readily be applied to multi-model ensembles.
Furthermore, E-SDS represents a cheap and efficient way
of analysing long time series and hence to reconstruct
historical climates from 20th century GCM simulations.
The advantage of downscaling to reproduce historical
climate records is that it is possible to determine how well
the GCMs represent the past [Benestad, 2003]. One mini-
mum requirement, but not sufficient, for using GCMs for
making scenarios for the future, is that the GCMs must be
able to describe past climate.
[4] It has been argued that GCMs give a better

representation of the upper-air fields than the near-surface
data [Busuioc et al., 2001], and therefore E-SDS should
use upper-air fields rather than surface fields as predic-
tors. One argument for using surface variables, however,
is that GCMs must be able to give a realistic description
of the near-surface conditions if they are to be considered
reliable. Furthermore, there is the question as to whether
the GCMs give a good description of the trends in the
upper-air fields because the actual trend is not well-
known in the real world [Seidel et al., 2004]. There is
also the question of non-stationarity, i.e. whether the
statistical relationship between the predictor and the
predictand is not constant. Predictors from more remote
regions or representing different elements are more prone
to non-stationarities than those that are local and more
directly linked to the predictand. One problem may be
that the vertical temperature profile may change, and it
has been argued that there is a significant temperature
trend difference in the free atmosphere and near the
surface [Chase et al., 2004]. Changes in the vertical
atmospheric structure, if real, may complicate the inter-
pretation of the relationship between upper air quantities
and surface variability.
[5] The objective of this paper is to provide a state-of-

the-art assessment of regional climate scenarios for northern
Europe. The work presented here is an update of the results
presented by B2002, but with some important differences.
The present results are derived from the very latest climate
simulations carried out for the IPCC AR4 and for a larger
set of locations. One important difference between the
previous downscaling work and the present is that so-called
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‘flux adjustment’ is becoming less of a factor in present
state-of-the-art GCMs [Meehl et al., 2005].

2. Data and Methods

[6] Local monthly mean 2-meter temperature [T(2 m)]
and monthly precipitation were taken from the Nordklim
data set [Tuomenvirta et al., 2001], the North Atlantic
Climatological Dataset [Frich et al., 1996] set (element
codes ‘101’ and ‘601’) as well as from Nordic Arctic
Research Programme [Førland, 2003]. The Norwegian
stations were updated with recent observations from the
Norwegian Meteorological Institute’s Climate archive. The
total number of station locations was N = 114 for temper-
ature and N = 124 for precipitation (not counting station
overlap in the different data sets). The station locations are
marked on the maps in Figures 1 and 2, but the station data
are also available from the auxiliary material1.
[7] The predictor for the local temperature was the

monthly mean large-scale T(2 m) anomalies from
the ERA40 re-analyses [Simmons et al., 2004] and the
corresponding predictor for local precipitation was the
ERA40 total precipitation (R. E. Benestad et al., On
statistical models for local precipitation, submitted to
International Journal of Climatology, 2005). The gridded
reanalysis data were combined with IPCC SRES A1b-based
climate scenarios from a GCM. (The following GCMs are
included: CNRM-CM3, GFDL-CM2.0, GFDL-CM2.1,
GISS-AOM, GISS-EH, GISS-ER, INM-CM3.0,
IPSL-CM4, ECHAM5/MPI-OM, MRI-CGCM2.3.2,
CCSM3, PCM, and UKMO-HadCM3. References and
further details are provided in the auxiliary material.) The

E-SDS consisted of a stepwise multiple regression between
the 8 leading common EOFs for the combined data and one
time series representing monthly temperature of precipita-
tion in one location (B2002). The domain was determined
automatically from the region of positive anomaly correla-
tion between the predictand and the predictors’ grid-box
values for each month and each site respectively.
[8] One new aspect of present analysis was that it

incorporated a post-process quality control in order to attach
less weigh to the least realistic results, hence adopting a
Bayesian-type [Wilks, 1995] approach. The post-processing
step graded the quality of the results according to the
realism of the spatial regression weights, how the trends
of adjacent months relate to each other (i.e. expecting
February trends not to be very different from January and
March and so on), realistic seasonal values and variability,
strong E-SDS regression results, and unrealistic size of the
predictor domain. Because the spatial correlation tends to be
non-zero and the spatial extent of regions of significant
positive correlation tend to be limited, unrealistically large
or small predictor domains may be indications of a failure to
detect the optimal domain.
[9] Maps were constructed based on predictions with a

geographically based stepwise multiple regression model
(GRM) following Benestad [2004b], but using the quality
weighted mean multi-model ensemble trend as the depen-
dent and (i) distance from the coast, (ii) zonal and (iii)
latitudinal position, (iv) altitude, (v) north–east slope, and
(vi) east–west slope as the independent variables. From
these, the stepwise screening identified which parameter has
real influence on the climate elements: distance from the
coast, altitude, latitude and longitude for T(2 m) and
latitude, longitude, and north–south and east–west slopes
for precipitation. The GRM accounted for 66% of the
spatial variance of the T(2 m) trends (p-value: 5 � 10�15)
and 33% of the precipitation trends (p-value: 4 � 10�7),
suggesting significant skill. Furthermore, a split-sample
evaluation using part of the data for calibrating the model
and the remaining independent data for verification,

1Auxiliary material is available at ftp://ftp.agu.org/apend/gl/
2005GL023401.

Figure 1. Map showing the linear weighted multi-model
ensemble annual mean temperature trend derived from the
E-SDS results, GRM predictions and residual kriging. Local
weighted mean trends values are given for capital cities,
selected locations in Greenland, and part of the Arctic for
the sake of completeness. Units are �C/decade.

Figure 2. Same as Figure 1, but for precipitation. Units are
mm/month per decade.
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demonstrates that the skill is real (auxiliary material). The
residuals of the GRM results were added through a standard
spatial interpolation kriging routine [Matheron, 1963]. Only
the shaded area in Figures 1 and 2 and locations marked
with grey circles were used in the GRM analysis (71 stations
used in the GRM analysis for T(2 m) trends and 91 for
precipitation).
[10] Further details on strategy, quality control, and

spatial interpolation are given in the auxiliary material.

3. Results

[11] Figure 1 shows the geographical distribution of
the mean annual temperature trends for the interval
‘2000’–‘2099’ and Figure 2 corresponding precipitation
rates. The GRM could describe 66% of the spatial variance
in the temperature trends, and the most important param-
eters were the zonal location (p-value = 0), meridional
location (p-value = 0.01), altitude (p-value = 0.03) and
distance from the coast (p-value = 0.10), indicating stronger
annual mean warming in the northeast, at higher altitudes,
and in the interior. This pattern is also seen in Figure 1,
although the residuals are added in the form of kriging. The
strongest warming is estimated for the high mountains in
southern Norway, and the interior of Finland, Sweden and
Norway. Least warming, according to these results, are
expected for the British Isles, east coast of Greenland and
Iceland.
[12] The E-SDS analysis for the annual mean precipita-

tion indicated positive future trends in general (mean value
for the locations was 0.5 mm/month per decade), as a result
of the SRES A1b emission scenario. The GRM for
precipitation indicated that the important parameters were
the north–south and east–west location as well as the
north–south and east–west slopes (33% of the geographical
variance). The sum of the GRM and kriging analysis shown
in Figure 2 indicates weaker trends over the British Isles and
the Benelux countries and strongest trends in localised parts
of Norway. The local enhancement of the precipitation can
at least partly be explained in terms of sloping topography
and orographic lifting. The precipitation results exhibit a
marked precipitation gradient along a southwest–northeast
running axis.

4. Discussion and Conclusions

[13] The present analysis was applied to the annual as
opposed to seasonal trends, and historical observations
suggest that there may be different trends in different
seasons [Hanssen-Bauer and Førland, 2000], but the sea-
sonal dependency of the trends is outside the scope of this
paper. Due to the Bayesian approach adopted, an assess-
ment of uncertainty ranges will not be straight-forward and
is therefore considered here. Downscaling analysis by
Benestad [2002] and others point to stronger winter-time
warming, and the present finding with more pronounced
warming at higher levels may suggest shorter snow season
and change in the seasonality of the river flow. A trend
towards higher precipitation also has implications for river
run-off.

[14] The present analysis suggests qualitative similar
results as obtained by B2002 for temperature, implying that
the trends are robust despite different GCM scenarios,
strategies and E-SDS models. The analysis for precipitation,
on the other hand, point to more annual precipitation in the
future, in contrast to the lack of trends in B2002.
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