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ABSTRACT
An ensemble of global climate scenarios from different coupled atmosphere–ocean general circulation models are
evaluated against re-analysed observations in terms of temperature trends over the period 1958–1998. The spatial
warming rate patterns for the “past” derived from the individual models exhibit large differences, but the median values
of the ensemble appears to capture some of the spatial structure observed. A probabilistic approach describing the past
warming rates is evaluated, and the combination of large inter-model differences and the good evaluation results justifies
a probabilistic view on the future climate.

Regional temperature scenarios are presented for northern Europe in the form of probability distributions, based
on spatially interpolated empirically downscaled trends, derived using a multi-model ensemble as well as various
downscaling options. The estimation of probabilities is based on the assumption that there is no common systematic
error in the various model scenarios, the IS92a scenario is valid for the future and their scatter portrays the actual
uncertainty. The results point to a model consensus of stronger warming over land during winter, with maximum
warming over Finland. The same analysis for July suggests an overall weaker summertime warming with a smaller
difference between the coasts and the interior.

1. Introduction

Increasing atmospheric concentrations of so-called greenhouse
gases, due to burning of fossil fuels, give a reason for major
concern because this kind of increase is expected to lead to an
enhanced greenhouse effect (Houghton et al. 2001). In order
to study how our climate might respond to the changes in the
associated radiative forcing, numerical global climate models
(GCMs) have been constructed in order to simulate how the
climate may be affected. Although the GCM results roughly
agree regarding the global mean temperature, different GCMs
often give diverging warming estimates on regional scales such
as the north European and the Arctic region (Räisänen, 2001a,b;
Benestad et al. 2002b). The discrepancy amongst the GCMs may
be due to several factors such as individual GCM bias, different
integration strategies, internal variability and different spin-up
histories. Although some GCMs are more realistic in terms of
reproducing the present-day climate, sophistication, and spatial
resolution than others, it is difficult to pick the most probable
regional climate scenario from a range of simulations. Some of
the most advanced GCMs (e.g. HADCM3 and NCAR-CSM) that
do not employ flux-correction tend to produce a cold bias in
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the description of the “present-day” climate in the Greenland–
Iceland–Norwegian Sea region (Holland et al. 2001; Benestad
et al. 2002a). The range of GCM estimates, however, may contain
useful information about the GCMs in general since the scatter
in the climatic trend estimates may be taken as a crude measure
of GCM uncertainties (Räisänen and Palmer, 2001). It is impor-
tant to keep in mind that whereas a large scatter implies large
uncertainties, a small scatter does not mean that the uncertainty
is small because it is possible that all the GCMs are wrong.

The use of multi-model ensembles may improve the GCM-
based data sample, both in terms of more independent re-
alizations and in canceling systematic biases specific to an
individual GCM. Such ensembles have been used to study how
increased greenhouse gas concentrations may alter the range of
temperature and precipitation (sometimes referred to as “super
ensembles”) (Houghton et al. 2001; Räisänen, 2002; Räisänen
and Alexandersson 2003). The improved sampling also provides
better estimates of probability distribution functions (PDFs), al-
lowing for a “probabilistic approach” to climate projections.
In their pioneering work, Palmer et al. (2000) derived prob-
ability estimates from multi-model ensemble integrations and
used them as input to a decision model assisting users of sea-
sonal forecasts. This work was later extended to future climate
projections (Räisänen and Palmer, 2001; Palmer and Räisänen,
2002).
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Table 1. Details on the different downscaled estimates. The Table gives a summary of the different simulations: 2 (ECHAM4 GSA & GSDIO) + 1
(NCAR-CSM) + 3 (CCCMA) + 1 (CSIRO) + 2 (ECHAM3) + 1 (GFDL) + 1 (HADCM3) + 4 (HADCM2) + 1 (NCAR-DOE) + 1 (CCSR/NIES) = 17. The first
column n gives the number of trend estimates for each model used for constructing the empirical probability distributions, i.e. sums up number of
ticks in columns 5–8. The second column lists the GCM, and column 3 gives the emission scenario: ‘GSA’ is the IPCC IS92a, ‘b006’ denotes a 1%
pa annual increase, whereas ‘GSDIO’ is similar to ‘GSA’ but with the additional effects of tropospheric ozone and aerosols’ indirect effect on
clouds. Columns 5–8 indicate which regions were used for the predictors in the downscaling, where the natl region is 90◦W–40◦E, 40◦N–75◦N,
neurope 30◦W–40◦E, 50◦N–70◦N, nordic 20◦W–40◦E, 50◦N–75◦N, and scan 0◦W–30◦E, 55◦N–75◦N)

n Model (member) Run Predictor natl neurope nordic scan Resolution (long × lat)

4 ECHAM4/OPYC3 GSDIO T(2 m) v v v v T42/L19 ∼2.8 × 2.8
3 ECHAM4/OPYC3 GSDIO �(700–500) v v v T42/L19 ∼2.8 × 2.8
3 ECHAM4/OPYC3 GSDIO T(850 hPa) v v v T42/L19 ∼2.8 × 2.8
2 ECHAM4/OPYC3 GSA T(2 m) v v T42/L19 ∼2.8 × 2.8
4 NCAR-CSM b006 T(2 m) v v v v ∼2.8 × 2.8
6 CCCMA 1-3 GSA T(2 m) v v T32/L10 ∼3.8 × 3.7
2 CSIRO GSA T(2 m) v v R21/L9 ∼5.6 × 3.1
6 ECHAM3/LSG 1,2 GSA T(2 m) v v v T21 ∼5.6 × 5.5
2 GFDL GSA T(2 m) v v R15 ∼7.5 × 4.4
4 HADCM3 GSA T(2 m) v v v v L19 3.75 × 2.5
8 HADCM2 1-4 GSA T(2 m) v v L19 3.75 × 2.5
2 NCAR-DOE GSA T(2 m) v v ∼7.5 × 4.4
2 CCSR/NIES GSA T(2 m) v v ∼5.6 × 5.5
48 sum

In order to assist decision making and make useful scenar-
ios for the future, it is necessary to assess the skill of the
GCMs. There has been a number of evaluation studies of GCMs
(Houghton et al. 2001). Much of the past evaluation has primar-
ily involved global mean surface temperatures (Tett et al. 1999;
Stott et al. 2001; Forest et al. 2002). When GCMs are used to
study the response of regional or local climates to an enhanced
greenhouse effect, it is desirable to evaluate their ability to repro-
duce the regional and local climatic trends of the past, although
only a few studies have focussed on this issue.

The spatial resolution of the most sophisticated global GCMs
is typically around 3 × 3 deg2 (Table 1) and important fea-
tures for local climates, such as mountain ranges and valleys,
are overly smoothed (Benestad, 2002b). The Scandinavian cli-
mate is strongly influenced by the local geography, which com-
prises mountain ranges, fjords, valleys, forests, with different
characteristic climates. The present state-of-the-art GCMs are
incapable of giving a realistic description of the local climate in
regions with a complex physiography (Houghton et al. 2001),
partly because they have too coarse a spatial resolution to ade-
quately represent the important geographical features. Another
issue is that GCMs are believed to have a lower limit on their
skillful spatial scale (Grotch and MacCracken, 1991; von Storch
et al. 1993a).

Local climate scenarios can nevertheless be derived using em-
pirical downscaling techniques where geographical information
(implicitly) as well as the relationship between large-scale cli-
matic anomalies and the local climate (explicitly) are taken into
account (e.g. Zorita and von Storch, 1997, 1999). It is also pos-

sible to “nest” higher-resolution models of a limited region and
take the results from the global climate models as boundary
conditions (dynamical downscaling) to improve the description
of the regional climate (Christensen et al. 1998, 2001; Kidson
and Thompson 1998; Haugen et al. 1999; Murphy, 1999, 2000).
In this study, however, large-scale climatic patterns are used to
derive information concerning the local climates through the
means of empirical downscaling. Empirical downscaling can in-
volve a number of different methods from simple regression be-
tween local climatic elements and climatic indices to advanced
multi-variate techniques and neural nets (von Storch et al. 1993b;
Heyen et al. 1996; Zorita and von Storch, 1997; Corte-Real et al.
1998; Kidson and Thompson, 1998; Kilsby et al. 1998; Schubert,
1998; Wilby et al. 1998; Deliang and Hellström 1999; Zorita and
von Storch, 1999; Huth and Kyselý, 2000; Busuioc et al. 2001;
Hellström et al. 2001; Beckmann and Buishand, 2002; Huth,
2002; Oshima et al. 2002), and there has been a considerable de-
velopment in the methodology over recent years. Table 2 gives
a summary of part of this development and a selection of refer-
ences to multi-variate methods relevant to empirical downscal-
ing. Some of the most recent work has entailed an improvement
over earlier work, both in terms of downscaling methodology as
well as improvements in the GCMs. This study uses the down-
scaled results from Benestad (2002b) and takes the analysis a
step further by including additional information (e.g. construct-
ing maps of probabilities and making use of geographical infor-
mation) not utilized in the previous analyses. A combination of
a geographical model and residual kriging ensures more real-
istic maps than the kriging-only analysis in Benestad (2002b),
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Table 2. Examples of various methods used in multi-variate analysis and empirical downscaling listed together with a selection of relevant
references. (This list is not comprehensive.)

Empirical orthogonal functions (EOFs) Lorenz (1956), North et al. (1982)
Canonical correlation analysis (CCA) Glahn (1968), Anderson (1958)
Kriging Matheron (1963)
Combination of principal component analysis (PCA) and CCA Barnett and Preisendorfer (1987)

Preisendorfer (1988)
Empirical/statistical downscaling Beckmann and Buishand (2002), Hellström et al. (2001)

Heyen et al. (1996), Kilsby et al. (1998), Kidson and Thompson (1998)
Deliang and Hellström (1999), von Storch et al. (1993b)
Zorita and von Storch (1999), Huth (2002), Huth and Kyselý (2000)
Oshima et al. (2002), Zorita and von Storch (1997)

Use of multi-model ensembles for analysing probabilities Räisänen and Alexandersson (2003), Räisänen (2002)
Räisänen and Palmer (2001)

Common PCA and EOFs Flury (1988), Sengupta and Boyle (1993), Sengupta and Boyle (1998)
Barnett (1999)

Mixed EOFs (combined PCA) Kutzbach (1967), Bretherton et al. (1992)
Use of CCA in empirical downscaling von Storch et al. (1993a), Heyen et al. (1996)

Huth (2002)
Common EOFs (cEOF) in empirical downscaling Benestad (2001)
Mixed-common EOFs (mcEOF) in empirical downscaling Benestad et al. (2002b)
Empirical downscaling of multi-model ensembles Benestad (2002a)
Kriging and downscaling (EOF space) Biau et al. (1999)
Kriging to produce spatial maps from downscaling e.g. Benestad (2002b)

and probabilistic estimates are less sensitive to outliers than en-
semble mean values. The geographical modelling is also used to
examine dependences on parameters such as the distance from
the coast, altitude, latitude and longitude. Furthermore, recon-
structions of trends and probabilities by individual GCMs are
evaluated against observations.

In order to avoid confusion, the term “model” will hence-
forth be used when referring to a statistical model either used
in empirical downscaling or describing the geographical depen-
dence, whereas “GCM” is used when referring to global climate
models. However, the term “multi-model ensemble” will refer
to GCMs. A distinction will also be made between the results
from simulations with GCMs (“global scenarios”) and results de-
rived through empirical downscaling (“downscaled scenarios”).
A trend is in this paper defined as a best-fitting linear time de-
pendence of a time-series, while a “time-series” may represent
single measurements from a climate station as well as chrono-
logical series of gridded realizations from a GCM simulation or
gridded analyses.

The following section describes the data used in the analy-
sis and gives a summary of the methods used for deriving the
results. The methods include the evaluation of past temperature
trends in the North Atlantic region, the probabilistic approach,
and using geographical dependences to produce maps of warm-
ing trends. Since the details of the empirical downscaling method
are published elsewhere, only a brief summary is given here on

this aspect. Section 2 is followed by the results of the evalua-
tion of the multi-model ensemble in terms of past trends and
probabilistic maps. The paper concludes with a discussion and
a conclusion.

2. Data and methods

2.1. Data

The data against which the GCMs were evaluated consisted of
monthly means taken from the National Center for Environmen-
tal Prediction (NCEP) reanalysis (Kalnay et al. 1996). The NCEP
reanalysis data does not give a “perfect” description of the real
world, and is also subject to errors and uncertainties. However,
the 2-m temperature used in this study gives a good reproduc-
tion of the temperature anomalies seen in climate station records
in Scandinavia and northern Europe (Benestad, 1999, 2002a;
Benestad et al. 2002b) and is therefore believed to be appro-
priate for model evaluation. The GCM simulations included 16
global climate scenarios following the IS92a emission scenario
(Experiments “GSA” in Table 1 were retrieved from the Inter-
governmental Panel on Climate Change (IPCC) Internet site1)
as well as results from an integration with the NCAR-CSM GCM
(taken from NCAR’s Internet site2). The NCAR-CSM results were

1http://ipcc-ddc.cru.uea.ac.uk/dkrz/dkrz index.html
2http://www.cgd.ucar.edu/csm/experiments/b006/downloadable.html
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from a 1% yr−1 increasing CO2 experiment from present-day
level (355 ppm) (experiment “b006” in Table 1). A total of 17
transient integrations were produced by 10 different GCMs (Ta-
ble 1), of which the HADCM2 model has produced four, ECHAM3
two and the CCCMA three ensemble members by being integrated
with different initial conditions. The ECHAM4 GCM was inte-
grated using two different set-ups: with (“GSDIO”) and without
(“GSA”) indirect aerosol effects.

The predictands comprised 85 homogenized North Atlantic
Climatological Dataset (NACD) (Frich et al. 1996) station
monthly mean temperature series from northern Europe and 30
Norwegian station series from the Norwegian Meteorological
Institutes climatological archive.

2.1.1. The downscaled scenarios. The downscaled temper-
ature trends were taken from Benestad (2002b), who appended
time series of the gridded monthly mean 2-m temperature
(T(2 m)) anomalies from the GCMs to the gridded reconstruc-
tions of observed monthly mean anomalous T(2 m) from the
Norwegian Meteorological Institute (Benestad, 2000). The GCM
results were bi-linearly interpolated onto the same grid as the ob-
servations (i.e. 5 × 5 deg2 longitude–latitude resolution) before
merging the data sets. Figure 1 illustrates this pre-processing of
data. The combined data set was subject to an empirical orthog-
onal function (EOF) analysis. EOFs of combined data sources
are known as “common EOFs” (cEOF) (Barnett 1999; Benestad
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Fig 1. A schematic illustration of the pre-processing required for the
common EOF analysis. First single monthly means (e.g. January) are
extracted from the data, and the mean values are subtracted. The
extracted model data are then interpolated onto the same grid as the
observations. Each grid-box in the data sets contains a time series
(vector) (e.g. X11 in the upper part of the figure). The model data (e.g.
X11model) is combined with the observations (X11obs) so that the time
series for the model results (white section of the line in the lower part)
is attached to the end of the time series representing the observations
(black section of the line in the lower part) for each grid-box. Common
EOF analysis involves an ordinary EOF analysis applied to the
combined data set. The part of the principal components representing
the observations are used for model calibration and the section
describing the GCM provides the input for downscaling.

2001) in the climate research community, more widely known
as common principal component analysis (Sengupta and Boyle,
1993, 1998; Flury, 1988). The cEOFs describe modes with iden-
tical structures in the observations and the GCM results, and are
associated with combined time series that describe their tempo-
ral variations for both the observations and the GCM data. The
part of the time series representing the observations is used for
the calibration of the empirical downscaling models, whereas
the part describing the GCM results is used for the projection of
climatic trends.

The downscaling model calibration was based on a step-wise
screening of the 20 leading modes in conjunction with em-
pirical models based on canonical correlation analysis (CCA).
The step-wise screening employed a cross-validation analysis
(Wilks, 1995) based on the Pearson correlation. The downscal-
ing analysis was applied to predictor data of different types and
of various regional coverage (Table 1) as there is no a priori in-
formation defining the optimal predictor variable or domain. The
predictors were chosen from four different regions referred to as
natl, neurope, nordic and scan. For each location the analysis
gave 48 different trend estimates for January, April and Octo-
ber, respectively, and 46 estimates for July. The July scenarios
included fewer estimates because the smallest domain (span-
ning 0◦W–30◦E/55◦N–75◦N) was associated with low skill for
downscaling models based on ECHAM4-GSDIO 700–500 hPa
thickness and T(850 hPa). The cEOF method and the empirical
downscaling are described and evaluated in detail by Benestad
(2001, 2002a,b).

2.2. Methods

2.2.1. Evaluation of GCMs. In order to carry out a direct
inter-comparison, the individual GCM results were bi-linearly
interpolated onto the same grid as the NCEP reanalysis (i.e. 2.5
× 2.5 deg2 longitude–latitude resolution). The evaluation of the
climate scenarios was based on comparison between the ‘past’
linear temperature trend at each respective grid-box with corre-
sponding 1958–1998 trends derived from the NCEP reanalysis.
Trends were estimated through the means of a linear regression
against time over the interval “1980”–“2050” for the scenar-
ios and “1958”–“1998” for the ‘past’3. The spatial correlation
and root-mean-square error (rmse) were calculated for the spa-
tial trend maps over the region 90◦W–60◦E, 0◦N–88◦N for the
January, April, July and October months, respectively, for the
individual GCMs as well as ensemble mean and median (NCAR-
CSM was excluded from the model evaluation since this integra-
tion only started in “1990”, but the NCAR-CSM were included in
the projections for the future).

3Internal variations do not correspond between the model results and
the real world, and the initial conditions of a GCM simulation has an
impact on the subsequent regional temperature evolution. A distinction
will therefore be made between the actual time and the model time stamp
by expressing the latter in apostrophes.
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Fig 2. Histogram showing the distribution of the linear best-fit to
downscaled warming trends in Oslo for January (a) and July (b). These
downscaled scenarios were derived by Benestad (2002b) using the
monthly mean temperature from the NACD set as predictand as well as
the predictors and climate simulations listed in Table 2.

The present work is an extension of earlier work documented
in Benestad (2002a) by presenting scenarios in terms of prob-
abilities similar to those in Räisänen and Palmer (2001), and a
minimum requirement for using a probabilistic approach must
be that it gives a reliable description of the past trends. (This cri-
terion also applies to deterministic descriptions of the trends.).
These probabilities are plausible for the future, provided that
the IS92a scenario is considered representative of the future
and the multi-model ensemble spread gives an unbiased esti-
mate of the probability density distribution. The probabilistic
approach is illustrated by Fig. 2, which shows histograms of
1980–2050 warming trends for Oslo in January (a) and July (b).

These histograms can be used to make an estimate of the prob-
ability of the warming rate exceeding a given value, and the
probability estimate (pi) for grid-box i (i = 1, . . . , N ) was es-
timated by counting the number of ensemble members yielding
a past warming rate (yi) exceeding a threshold value (y∗) and
then dividing by the total number of ensemble members. In this
example, the predicted warming is strongest in January and the
histogram peaks at 0.5 ◦C decade−1. There is also a long tail at
the upper end of the scale. For July, the various GCM estimates
have a smaller spread, with the majority of the GCMs projecting
a trend of 0.15 ◦C decade−1 for the period 1980–2050.

The Brier score (Wilks, 1995, p. 259) was used for the eval-
uation of probabilities (1958–1998 period). The Brier score is
estimated according to

BS = 1

N

N∑
i

[pi − H(yi − y∗)]2 (1)

where H is the Heaviside function:

H(x) =
{

0 for x < 0
1 for x ≥ 0.

(2)

It is important to keep in mind that these probability estimates
do not necessarily reflect the “true probability” of actual future
warming exceeding given threshold rates, but are merely a mea-
sure of how well the various GCMs agree. These “probabilities”
are also conditional on the IS92a emission scenario as well as the
assumption that the GCM spread gives a good representation of
the true uncertainty (i.e. no common GCM shortcomings), and
they will henceforth be referred to as “conditional probabilities”.

2.2.2. The refinement of the downscaled scenarios. Ben-
estad (2002b) used kriging analysis (Matheron 1963) in or-
der to construct spatial maps describing how future warming
(i.e. the multi-model ensemble mean) may vary geographically.
Although this kind of spatial interpolation gives an approxi-
mately realistic representation, it does not take into account the
fact that local warming rates may vary with the distance from the
coast, altitude, latitude and longitude. In order to produce more
realistic maps, this geographical information must be included
in the spatial analysis. The results presented here are “refined”
further from those of Benestad (2002b) by taking into consider-
ation geographical information not utilized in the earlier work,
in addition to examining conditional probability estimates in-
stead of multi-model ensemble mean values. The conditional
probabilities (fraction of ensemble members) of the warming
rate exceeding a given threshold value (chosen to be 0.50 ◦C
decade−1 for January and 0.25 ◦C decade−1 for April, July and
October; see the above discussion and Fig. 2) derived for each
site was used in a geographical model based on a multiple regres-
sion analysis against distance from the coast, altitude, latitude
and longitude. The geographical models for January, April, July
and October are summarized in Table 4 in Section 3.2, which
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shows the dependences on the distance from the coast, altitude,
latitude and longitude as well as the uncertainties associated with
these. The model details in Table 4 are listed in the form of co-
efficient estimates, standard error estimates, t-values and proba-
bilities (p-value) of null-hypothesis (zero coefficient) being true.
Also shown are the estimates for the R2 (variance explained), the
F-statistic (“strength” of the regression), the degrees of freedom
and the p-value for the entire regression. It is important to keep
in mind that the geographical models derived here may not be
valid for other parts of the world. A kriging analysis similar to
Benestad (2002b) was used for the spatial interpolation of the
residuals from the regression analysis.
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Fig 3. Comparison between observed (a) and the multi-model ensemble median simulated linear trends (b) corresponding to January 1958–1998.
Panel (c) shows the inter-quantile range (IQR) of the multi-model ensemble trend estimates, and panel (d) shows the conditional probabilities of the
mean 1958–1998 January warming rates exceeding 0.5 ◦C decade−1.

3. Results

3.1. Model evaluation

Figure 3a shows the geographical distribution of linear trends
in January derived from the NCEP re-analysis, based on a lin-
ear regression against time. This analysis represents the ob-
served warming trends over 1958–1998, and the results suggest
strongest warming in the vicinity of the ice-edge. One expla-
nation for this rapid warming may be a thinning of the sea-ice
(Rigor et al. 2002) or a retreat in the sea-ice (Benestad et al.
2002a). Figure 3b shows the corresponding analysis based on
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Table 3. Spatial pattern correlation (cor) and root-mean-square error
(rmse) over 90◦W–60◦E, 0◦N–88◦N between 1958–1998 linear trends
from NCEP reanalysis T(2 m) and from GCM T(2 m). The results are
expressed as “cor/rmse” for each of the months January, April, July and
October. Also shown is the Brier score for the probabilistic scenarios.
High correlation but low rmse and Brier scores (associated with a
threshold rate of 0.50 ◦C decade−1 for January and 0.25 ◦ decade−1 for
April, July and October) signify good skill. The analysis is made for
1672 grid boxes.

GCM run January April July October

ECHAM4 GSDIO 0.49/0.63 0.51/0.36 0.05/0.32 0.46/0.42
ECHAM4 GSA 0.30/0.65 0.17/0.41 0.14/0.31 0.37/0.45
ECHAM3 1 −0.62/0.82 −0.01/0.42 0.02/0.30 −0.29/0.48
ECHAM3 2 0.44/0.52 0.19/0.38 −0.01/0.30 −0.18/0.42
CCCMA 1 0.11/0.71 0.00/0.45 −0.13/0.36 −0.02/0.43
CCCMA 2 −0.05/0.74 0.24/0.39 −0.08/0.35 0.06/0.55
CCCMA 3 0.12/0.67 0.26/0.40 −0.01/0.34 0.03/0.49
CSIRO 0.30/0.69 0.37/0.38 −0.19/0.33 −0.39/0.48
GFDL −0.05/0.73 0.00/0.45 0.08/0.33 0.30/0.58
HADCM3 −0.60/1.13 −0.26/0.64 −0.01/0.35 0.14/0.49
HADCM2 1 −0.12/0.68 −0.35/0.67 −0.02/0.33 −0.07/0.42
HADCM2 2 0.55/0.57 0.55/0.43 0.06/0.29 0.31/0.53
HADCM2 3 0.01/0.76 0.06/0.54 −0.02/0.32 −0.22/0.53
HADCM2 4 0.65/0.72 0.36/0.55 0.04/0.33 0.16/0.47
NCAR-DOE −0.59/5.18 −0.27/4.08 0.12/2.79 −0.13/4.34
CCSR/MIES 0.49/4.56 0.14/3.70 −0.16/2.82 0.30/5.03
Ensemble mean −0.04/0.85 −0.04/0.52 −0.01/0.44 0.15/0.70
Ensemble median 0.21/0.62 0.32/0.37 0.03/0.28 0.20/0.40
Brier score 0.12 0.06 0.16 0.22

the multi-model ensemble median derived from the climate sce-
narios. The GCMs underestimate the warming over the eastern
Russia peninsula and fail to capture the retreat of the sea-ice in
the Greenland and Barents seas. Figure 3c shows the dispersion
within the ensemble, which suggests that there is a high degree
of discrepancy amongst the GCMs in the vicinity of the ice edge.
The conditional probability analysis shown in Fig. 3d is based
on multi-model ensemble distributions similar to those shown in
Fig. 2.

Table 3 shows the skill scores from the evaluation of the indi-
vidual GCMs as well as the ensemble. The NCAR-DOE and NIGS

results are clearly unrealistic: they have root-mean-square er-
rors that are almost an order of magnitude greater than those of
the other models. No GCM stands clearly out as superior, al-
though the ECHAM4-GSDIO and two of the HADCM2 members
score high in three out of the 4 months examined. April gives on
average the best correlation scores and the best Brier score, how-
ever, it is important to keep in mind that the January Brier score
is not directly comparable to the others as the January thresh-
old value is different because the warming is much stronger in
January than in the other months. The July month, on the other
hand, tends to give lower correlation scores on average than the

other months4, suggesting that the summer scenarios are more
difficult than the rest of the year. October gives the worst Brier
scores. However, there are large differences amongst the various
ensemble members based on the same GCM (ECHAM3, CCCMA

and HADCM2), suggesting that model evaluation based on merely
41 yr in the past (the length of the NCEP data) is difficult. The
large spread may be a result of a weak trend, the short series used
in the analysis, and hence the difficulty in defining a trend (i.e.
a low signal-to-noise ratio).

The scores associated with the multi-model ensemble mean
are poor, due to the sensitivity to clearly unrealistic GCMs
(NCAR-DOE and NIGS) included in the ensemble. The ensemble
median, on the other hand, is not so sensitive to outliers, and sys-
tematically yields better scores. Thus the GCM evaluation based
on the 1958–1998 period (Table 3) suggests that it is better to
use the multi-model ensemble median rather than the ensemble
mean. Probabilistic results also have a lower sensitivity to the un-
realistic GCMs than the ensemble mean. The large inter-GCM
spread in combination with the good (i.e., low) Brier scores in
Table 3 seems to justify a probabilistic approach.

Figure 4 shows a comparison between the multi-model en-
semble median of the January trends estimated for the period
1980–2050 (a) and corresponding conditional probabilities of
the warming rate exceeding 0.5 ◦C decade−1 (b). It is clear from
this figure that the probabilistic approach gives slightly different
information than the ensemble median (e.g. less than 20% of
the GCMs suggest a January warming rate over the British Isles
exceeding 0.5 ◦C decade−1 and 60–70% of the GCMs indicate
warming rates greater than 0.5 ◦C decade−1 over parts of Russia),
although the large-scale structure is similar.

3.2. Downscaled climate scenarios

Figure 5 shows the geographical distribution of the conditional
probabilities of a warming rate exceeding 0.5 ◦C decade−1 in
January, based on distributions of trends estimated from down-
scaled scenarios similar to that for Oslo in Fig. 2. The main differ-
ence between Figs. 5 and 4 is that the former takes into account
local geographical effects through the means of downscaling and
by utilizing the dependences of the conditional probabilities as-
sociated with downscaled trend-estimates to the distance from
the coast, altitude, latitude and longitude. This map indicates
that the likelihood for a future warming rate exceeding 0.5 ◦C
decade−1 is low near the coasts, assuming the IS92a scenario.
It is furthermore likely that the winter warming will be stronger
than 0.5 ◦C decade−1 over interior Finland and southern Swe-
den, as the conditional probability estimates are above 70% in
these areas. A comparison between Figs. 4b and 5 shows that
that there is a good agreement between the large-scale structures
of the scenarios derived directly from the global climate scenar-

4The rmse score was not used in the comparison between seasons since
the trend magnitudes are expected to be seasonally dependent.
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Fig 4. A comparison between the GCM ensemble median linear trend for January 1980–2050 (a) and conditional probability of a warming greater
than 0.5 ◦C decade−1 (b).
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Fig 5. Probability estimates of the warming exceeding a threshold
value of 0.5 ◦C decade−1 in January for “1980”–“2050”, derived from
downscaling of the multi-model ensemble and based on the assumption
that there is no common systematic bias amongst the various GCMs.
The map was produced using the multiple geographical regression
model (Table 4) and kriging of the residuals from the geographical
model. The stations included in the analysis are marked as black dots.

ios and the downscaling, but it is also apparent that the local
details are enhanced by downscaling. The conditional probabili-
ties are in general higher in the downscaling analysis (over land).
Figure 5 reveals new features not seen in the analysis of the multi-
ensemble median (Fig. 4a) warming trends or the conditional
probabilities derived directly from the GCM results (Fig. 4b).
There is a larger proportion of downscaled scenarios suggesting
a rapid warming over southern Sweden than over northern Swe-
den, and this information cannot be seen in a map of multi-model

ensemble median (Fig. 4a) or ensemble means (Benestad 2002b,
Fig. 9a). Hence, the probability can give more information than
just the ensemble median or mean. The ANOVA results in Table 4
suggest that the important geographical parameters in January
are the distance from the coast and longitude. The geographical
model accounts for 42% of the observed spatial structure, and
thus a substantial part of the spatial variations of the conditional
probabilities in winter must be incorporated through kriging.

Figure 6 shows corresponding empirically downscaled sce-
narios for April, but for threshold values of 0.25 ◦C decade−1.
The analysis points to low conditional probabilities (p < 15%)
for warming rates exceeding 0.25 ◦C decade−1 in southwestern
Norway, and that there are no regions with high values. The
highest conditional probabilities (p ∼ 55%) are seen over inte-
rior Finland. In April, both latitude and longitude are important
for the conditional probabilities, but the distance from the coast
has a weak effect on the geographical distribution (Table 4). An
R2-value of 61% suggests that conditional probabilities have a
stronger dependence on geographical features in spring than in
the other seasons.

The warming is also much weaker in July than in January.
Figure 7 shows a similar map of conditional probability estimates
for the warming rate exceeding 0.25 ◦C decade−1 in July. The
highest conditional probabilities are found over southern Finland
and the interior southern Scandinavia. The downscaled results
exhibit a clear latitude–longitude dependence (Table 4). Most
(68%) of the spatial variations in the conditional probabilities
in the summer, however, are not related to the distance from the
coast, altitude, latitude and longitude.

In October the highest conditional probabilities are found in
the interior parts of southern Sweden and Norway and near the
coast of southwestern Finland. Since the threshold value used
for the October analysis is 0.25 ◦C decade−1, the results are still
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Table 4. The analysis of variance (ANOVA) of the geographical multiple regression model, y = c0 + c0 dist + c0 alt + c0 lat + c0 lon, for
January, April, July and October. The independent variable “dist” is the distance from the coast, “alt” is the altitude, “lat” is the latitude, and “lon” is
the longitude of the location of the downscaled scenarios. Significance codes: 0 ‘∗∗∗’ 0.001 ‘∗∗’ 0.01 ‘∗’ 0.05 ‘.’ 0.1 ‘ ’ 1

January
Estimate Std. error t-value Pr(>|t |)

(Intercept) 0.394 001 20.805 723 0.019 0.985
dist 17.358 068 2.998 599 5.789 6.80e−08∗∗∗

alt −0.005 374 0.006 237 −0.862 0.391
lat 0.174 924 0.342 191 0.511 0.610
lon 0.583 544 0.126 104 4.627 1.02e−05∗∗∗

R2 = 0.4239 F-statistic = 20.23 on 4 and 110 DF p-value = 1.635e−12
April
(Intercept) −59.271 664 13.387 953 −4.427 2.26e−05∗∗∗

dist 3.839 196 1.929 522 1.990 0.0491∗

alt −0.003 259 0.004 013 −0.812 0.4186
lat 1.218 826 0.220 191 5.535 2.13e−07∗∗∗

lon 0.769 375 0.081 145 9.481 6.66e−16∗∗∗

R2 = 0.611 F-statistic = 12.45 on 4 and 110 DF p-value = 0
July
(Intercept) 6.730e+01 1.140e+01 5.902 4.04e−08∗∗∗

dist 4.061e+00 1.643e+00 2.471 0.015∗

alt −7.806e−05 3.418e−03 −0.023 0.982
lat −8.371e−01 1.875e−01 −4.464 1.96e−05∗∗∗

lon 3.328e−01 6.911e−02 4.816 4.71e−06∗∗∗

R2 = 0.316 F-statistic = 12.71 on 4 and 110 DF p-value = 1.557e−08
October
(Intercept) 51.052 393 19.427 661 2.628 0.009 82∗∗

dist 2.808 711 2.799 987 1.003 0.31801
alt 0.023 623 0.005 824 4.056 9.35e−05∗∗∗

lat −0.491 098 0.319 526 −1.537 0.12718
lon 0.674 214 0.117 752 5.726 9.05e−08∗∗∗

R2 = 0.3873 F-statistic = 17.38 on 4 and 110 DF p-value = 4.45e−11

consistent with the strongest warming in January (Fig. 8). The
geographical analysis suggests a systematic variation in condi-
tional probabilities with altitude as well as longitude (Table 4).
The conditional probabilities in October are not sensitive to the
distance from the coast or the latitude, and 61% of the spatial
variance must be added in the form of kriging.

4. Discussion

The downscaled results from the multi-model ensemble point to
a large proportion of trend estimates, indicating enhanced warm-
ing over the continents in winter. The large number of scenarios,
indicating a strong winter warming over Finland and southern
Sweden seems to be robust and merits an explanation. The ad-
ditional information seen in the local details comes from the
statistical models employed in the analysis, describing the rela-
tionship between the large and small scales, although the GCMs
describe much of the large-scale spatial structure. Even though
the empirical models are statistical, it can be argued that they
do reflect the underlying physical mechanisms explaining the
patterns. The explanation for the close model agreement (80–

90%) on the high warming rate in the interior of Finland does
not seem to be that the January temperature in this region is rel-
atively insensitive to variations in the North Atlantic Oscillation
(NAO) (R2 ∼ 30%), since there is good model agreement on the
weak warming in southwestern Norway where the influence of
the NAO is strong (R2 ∼ 50%). Furthermore, few of the GCM
simulations considered here suggest a significant trend in the
NAO, and the different descriptions of the NAO can therefore
be regarded as different realizations of climatic noise. The re-
gions with highest conditional probabilities are characterized as
forested with inland climates, in which during winter there would
be snow on the ground and in some situations on the trees. Snow
can affect the local climate through the local radiative balance,
the effect on moisture and latent heat of fusion (a ‘buffer’ effect
with respect to temperature), and it is possible that a climatic
change in this region is amplified through changes in the snow
cover. The cloud cover may also affect the local radiative bal-
ance, e.g. low January temperatures in Scandinavia are usually
associated with clear skies. Temperature inversions associated
with extremely cold conditions near the ground can take place
during winter in the interior of Scandinavia, and a change in the
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Fig 6. Same as in Fig. 5, but for the April month and a threshold of
0.25 ◦C decade−1.
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Fig 7. Same as in Fig. 5, but for the July month and a threshold of 0.25
◦C decade−1.

frequency of temperature inversion effects may also affect the
temperature trends. The dependence of the results on the dis-
tance of the coast (Table 4) also suggests that the warming near
the coasts may be moderated by the oceans. The isolated “hot
spot” (four stations) over southern Sweden (p > 60%) may also
be a coincidence owing to the problem of multiplicity (Wilks,
1995).

A similar “hot spot” is seen in July, albeit shifted slightly to the
northwest of the high conditional probabilities in January. Again,
the most plausible explanation is that the enhanced warming
over this part of Sweden is a result of additional geographical
information from the actual world introduced by the empirical
downscaling. But there is no snow in the summer so it cannot play
a role in this case. A physical explanation for the geographical
differences in the summer-time warming could involve humidity
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Fig 8. Same as in Fig. 5, but for the October month and a threshold of
0.25 ◦C decade−1.

or cloud cover. Cloudy summer days are often cooler than clear
summer days. However, it is important to keep in mind the fact
that the model evaluation indicated relatively high degree of
uncertainties associated with the July trends (Table 3).

The April results are associated with the best evaluation
scores, and the geographical model accounts for more spatial
variance than the other months examined, and the greatest condi-
tional probabilities (∼50%) are found over eastern Finland while
the lowest probabilities are seen over southern Norway. In other
words, there is a model consensus on weak spring-time warm-
ing in southern Norway, and there are an increasing number of
models giving faster spring-time warming towards the east and
the north. One explanation for the slow warming over southern
Norway could involve the influence from the sea or clouds, and
an enhanced warming over the northeastern part could involve
the spring-time snow cover or cloud cover.

It is only the October results that exhibit a dependence on al-
titude, and it is interesting to note a positive correlation between
altitude and the conditional probability estimate. In other words,
the conditional probability for the October warming rate ex-
ceeding 0.25 ◦C decade−1 tends to be higher in the high-altitude
regions. A stronger autumn warming in the mountains could pos-
sible be related to later autumn snows in the mountains, affect-
ing the local radiative balance, humidity and thermodynamics.
Clouds may also play a role. The geographic model only can
account for about 39% of the spatial probabilistic warming pat-
tern, and there are regions not associated with mountains where a
large proportion of the estimates indicate fast autumn warming.

The warming associated with the IS92a emission scenario is
expected to be stronger in the future than in the past, and hence
the signal-to-noise ratio is expected to be stronger for these sce-
narios. Moreover, as long as the emission scenarios are plausi-
ble, the multi-model ensemble will provide a plausible climate
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scenario. It is nevertheless important to emphasis the fact that
there are large uncertainties associated with these results. Al-
though the GCMs roughly reproduce the geographical patterns
of the past warming, they tend to underestimate the magnitude.
Even if the simulation of the past did agree well with the historical
observations, there is no guarantee that the future emission sce-
nario will come true. The fact that different ensemble members of
integrations with the same GCM but different initial conditions
(ECHAM3, CCCMA and HADCM2) give very different evaluation
scores (Table 3) suggests that internal variations are pronounced
and affect the trend estimates. Allen et al. (2000) argue that the
use of multi-model ensembles may be problematic because the
GCMs do not necessarily span the full range of known climate
system behaviour, and it is important to keep this in mind when
interpreting the conditional probability estimates. The empirical
downscaling may introduce additional uncertainties in the sce-
narios due to shortcomings in the analysis (Benestad, 2001) as
linear statistical downscaling models merely provide an approxi-
mate description of the relationship between the different spatial
scales. It is also possible that these statistical relationships are
non-stationary in time (Wilby, 1997). It is therefore important
to take into consideration not only the uncertainties associated
with the GCMs but also those accompanying the downscaling.
Furthermore, the trends are often not linear, and therefore a lin-
ear fit may not be the most appropriate description for the past
climatic evolution (Benestad, 2003).

5. Conclusions

The evaluation of the GCM results revealed large differences be-
tween individual climate scenarios. The best evaluation scores
were generally seen in April and the worst reproduction of the
geographical distribution of past trends was found in October
and July. The large spread in evaluation scores implies that lit-
tle confidence should be attached to a single-integration sce-
nario, and an ensemble approach is required in order to extract
the climate-change signal from the internal decadal variability.
The evaluation of 16 different GCM-based climate simulations
in terms of the 1958–1998 warming trends also suggested that
the GCM ensemble median in general underestimates the past
winter-time warming rates. The rapid warming in the Greenland–
Iceland Sea is absent in the GCM median, however, the GCMs
do reproduce some of the observed land–sea contrasts. The en-
hanced warming in the Greenland–Iceland Sea is more easily
seen in maps of estimated conditional probabilities. The good
Brier scores associated with the probabilistic approach and the
large spread in inter- and intra-GCM scores justify the use of
conditional probabilities in presenting climate scenarios.

The downscaling analysis of the multi-model ensemble pre-
sented here points to high conditional probabilities regarding a
rapid future warming over interior Finland and southern Swe-
den during winter. These results may be taken as a first estimate

for a probabilistic climate forecast, assuming the IS92a emis-
sion scenario, that the systematic errors in the individual GCMs
are independent, that the overall multi-model ensemble samples
most of the data space of the actual climate and that the GCM
ensemble is not biased.

Further work on empirical downscaling is planned which will
involve a repetition of the analysis on new emission scenarios
and GCM simulations following the IPCC special Report Emis-
sion Scenarios (SRES) scenarios and extend the analysis to pre-
cipitation. A new climate analysis package (clim.pact) for the
R-environment5 (Ellner, 2001; Gentleman and Ihaka, 2000) will
be used in future work.

6. Acknowledgments

Ole Vignes assisted in retrieving the ECHAM4/OPYC3 GSDIO
data. Ole Einar Tveito gave valuable comments about spatial in-
terpolation and three anonymous reviewers gave valuable com-
ments on the manuscript. This work was performed under the
Norwegian Regional Climate Development under Global Warm-
ing (RegClim) program, and was supported by the Norwegian
Research Council (Contract NRC-No. 120656/720) and the Nor-
wegian Meteorological Institute. The plots in this paper were
made with the GNU project’s R data analysis tool and the
Gebhardt (2000) kriging R-package.

References

Allen, M. R., Stott, P. A., Mitchell, J. F. B., Schnur, R. and Delworth,
T. L. 2000. Quantifying the uncertainty in forecasts of anthropogenic
climate changes. Nature 407, 617–620.

Anderson, T. W. 1958. An Introduction to Multivariate Statistical Anal-
ysis. 1st edn. Wiley, New York.

Barnett, T. P. 1999. Comparison of near-surface air temperature variabil-
ity in 11 coupled global climate models. J. Climate 12, 511–518.

Barnett, T. P. and Preisendorfer, R. W. 1987. Origins and levels of
monthly and seasonal forecast skill for United States surface air tem-
peratures determined by canonical correlation analysis. Mon. Wea.
Rev. 115, 1825–1850.

Beckmann, B.-R. and Buishand, T. A. 2002. Statistical downscaling re-
lationships for precipitation in the Netherlands and north Germany.
Int. J. Climatol. 22, 15–32.

Benestad, R. E. 1999. Conversion of the NCEP re-analysis data to the
netCDF format and quality control. KLIMA 31/99. DNMI, PO Box
43 Blindern, 0313 Oslo, Norway.

Benestad, R. E. 2000. Analysis of gridded sea level pressure and 2-meter
temperature for 1873–1998 based on UEA and NCEP re-analysis II.
KLIMA 03/00. DNMI, PO Box 43 Blindern, 0313 Oslo, Norway.

Benestad, R. E. 2001. A comparison between two empirical downscaling
strategies. Int. J. Climatol. 21, 1645–1668. DOI 10.1002/joc.703.

Benestad, R. E. 2002a. Empirically downscaled multi-model ensemble
temperature and precipitation scenarios for Norway. J. Climate 15,
3008–3027.

5R can be downloaded freely from http://www.R-project.org/, and
clim.pact can be found under the link to “contributed packages”.

Tellus 56A (2004), 2



100 R. E . BENESTAD

Benestad, R. E. 2002b. Empirically downscaled temperature scenarios
for northern Europe based on a multi-model ensemble. Climate Res.
21, 105–125.

Benestad, R. E. 2003. What can present climate models tell us about
climate change? Climatic Change. 59, 311–332.

Benestad, R. E., Hanssen-Bauer, I., Skaugen, T. E. and Førland, E. J.
2002a. Associations between the sea-ice and the local climate on
Svalbard. KLIMA 07/02. met. no, PO Box 43 Blindern, 0313 Oslo,
Norway.

Benestad, R. E., Hanssen-Bauer, I. and Førland, E. J. 2002b. Empiri-
cally downscaled temperature scenarios for Svalbard. Atmos. Sci. Lett.
September 18, doi.10.1006/asle.2002.0051.

Biau, G., Zorita, E., von Storch, H. and Wackernagel, H. 1999. Estima-
tion of precipitation by kriging in EOF space. J. Climate 12, 1070–
1085.

Bretherton, C. S., Smith, C. and Wallace, J. M. 1992. An intercomparison
of methods for finding coupled patterns in climate data. J. Climate 5,
541–560.

Busuioc, A., Chen, D. and Hellström, C. 2001. Performance of statistical
downscaling models in GCM validation and regional climate change
estimates: application for Swedish precipitation. Int. J. Climatol. 21,
557–578.

Christensen, O. B., Christensen, J. H., Machenhauer, B. and Botzet, M.
1998. Very high-resolution climate simulations over Scandinavia—
present climate. J. Climate 11, 3204–3229.
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