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ABSTRACT

The chance of seeing new record-values in a stationary series is described by a simple mathematical

expression. The expected probability for new record-values is then used to estimate the expectation

number for new parallel records in N independent stations at a given time. This probability is then com-

pared with the observed number of new records. A confidence interval about the theoretical expectation

number is estimated using Monte-Carlo integrations, and a χ2-type test can be used to assess whether

the rate of observed new records is higher than expected for a number of stationary series. The results

of this record-statistics test suggest that the observed rate of record-warm monthly mean temperatures

at 17 stations around the world may be unexpectedly high.

In addition to testing N independent series as a group, it is also possible to examine the number

of records set in a single series of a given length. An expression is derived for how the number of records

varies with the length of the series, and a confidence interval is estimated using Monte-Carlo integrations.

Taking the mean number of records from 17 climate stations spread around the globe, it is shown that

by the end of the 20th century, it is higher than expected if the series had been stationary.

The record-statistics tests can be used to identify non-stationarities which are problematic for ex-

trapolations of return-periods and return-values from fitting the tails of extreme value distributions.

The results for the monthly mean temperature from 17 stations world-wide point to the presence of non-

stationaries, implying that a projection will under-estimate the future return-values while over-estimating

the return-periods for the monthly mean temperature if the warming trend continues.

Key words: Record-value statistics extremes temperature
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Introduction

The estimation of probability distribution functions (p.d.f.) for time series usually as-

sume that the series comprises of independent and identically distributed (iid) random

variables (Raqab, 2001; von Storch and Zwiers, 1999; Balakrishnan and Chan, 1998)

(identical distribution implies stationarity and homogeneity). Extreme value statistics

that aim at estimating return values and return periods (which is in effect an extrapo-

lation) normally involve fitting the tails of distribution functions to the data. The pres-

ence of non-stationarities (here referring to non-constant p.d.f.) in the form of long-term

trends in the location (e.g. mean value) or range (e.g. variance) can result in serious bi-

ases and spurious results when used for extrapolation beyond the examined interval. For

example, climatic events with an estimated return period of 40 years in the present-day

climate may in the future occur about every 8 year on average (Palmer and Räisänen,

2002). In the area of climate change, one is often interested in non-stationary time series,

such as the global mean temperature (Jones et al., 1998) which indicates a warming

trend (Houghton et al., 2001). Another aspect of climate change is the possibility of

changing amplitudes or variability (Schär et al., 2004).

Record-event type statistics exists in the literature (Bunge and Goldie, 2001; Feller,

1971; Glick, 1978; Nevzorov, 1987; Nagaraja, 1988; Ahsanullah, 1989, 1995; Arnold et al.,

1998; Balakrishnan and Chan, 1998; Bairamov and Eryilmaz, 2000; Raqab, 2001), but

has not been widely applied within the climate research community. One reason for this

may be that practicable record-event statistics is not well developed for climate studies. A

simple and practicable method for applying record-event statistics to climatological data

has been proposed by Vogel et al. (2001) and Benestad (2003). An important question

regarding extreme values is how often we can expect a new record-event, assuming a

series of iid random variables. Balakrishnan and Chan (1998) considered the distribution
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of record-values and the timing of each event. They applied Monte-Carlo simulations to

derive confidence limits for testing whether a current record-event was consistent with

an iid process. Benestad (2003) used a simpler method to examine the number of new

records in monthly mean global temperature (Jones et al., 1998), monthly maximum

24-hourly precipitation, and absolute monthly maximum & minimum temperature in the

Nordklim data set (Tuomenvirta et al., 2001).

The record-event statistics discussed in these papers assume a null-hypothesis of iid

random values, and a falsification of the tests of iid may indicate the presence of non-

stationarities (i.e. the variables are not identically distributed) or dependence between the

observations. In this case, parallel series are examined, and in order to conclude whether

the series are non-stationary, it is necessary to rule out the possibility of dependence

between sequences and serial dependence within sequences. If such tests can identify non-

stationarities, then they are useful in conjunction with fitting extreme value distributions.

In this paper, the analysis of Benestad (2003) will be extended to long series of

monthly mean temperature from different parts of the world (Hansen et al., 2001). The

results from the record-event analysis will be discussed in conjunction with the more

traditional extreme value distributions as well as situations when the iid tests may fail.

Two types of iid tests will also be compared in terms of their sensitivity to dependencies.

Data & Method

Data

A subset of NASA Goddard Institute for Space Studies (GISS) temperature series from

Hansen et al. (2001)∗, listed in Table 1, was used for the record statistics analysis. The

∗ URL http://www.giss.nasa.gov/data/update/gistemp/
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analysis requires long time series since new records are infrequent and shorter series give

less precise results. Hence, one criterion was that the observations at least should extend

into the 19th century and series with large gaps of missing data were excluded. The

stations were selected according to whether they were up-to-date (last year is ’2003’),

their length (first year before ’1900’), and gaps of missing values (only stations with

less than 100 missing values were used). Other criteria for selecting stations was that

they were spread out in order to avoid spatial dependencies and that there were no

clear visual indications of inhomogeneities. The presence of inter-stations dependencies

can influence the analysis (Vogel et al., 2001), and in order to avoid dependent data

series, only one station was used in places where several stations might be affected by

the same synoptic temperature anomalies, and therefore a final set of 17 stations was

used in the iid tests described here (Figure 1: named stations). Each station provided

12 different series, one for each calendar month, and the total number of series were

therefore N = 12× 17 = 204. The N series of length n were combined to form an n×N

data matrix X, and the mathematical symbol xi will be used here to denote one single

series whereas ~xn will refer to N simultaneous (parallel) observations at time n.

Long series are also required for good fits to the tails of distributions and to model

extremes. The Central England Temperature (CET) record (Jones, 1999) was used inde-

pendently to illustrate how generalised extreme value distributions (GEVs) may change

over time, as this series is the longest available instrumental record and spans over 1659–

2003. The CET data were obtained from the Climate Research Unit (University of East

Anglia)∗ and the Hadley Centre† Internet pages.

∗ http://www.cru.uea.ac.uk/ mikeh/datasets/uk/cet.htm

† http://www.met-office.gov.uk/research/hadleycentre/CR data/Monthly/HadCET act.txt
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Method

The probability of the last value in a series of n iid observations being the highest (i.e.

setting a new record) with no ties for the maximum value can be estimated according to:

pn(1) =
1

n
. (1)

The notation adopted here is pn(1) denoting one new record for the nth observation, and

pn(0) would be the probability of seeing no new records.

For short time-series, the chance of seeing a new record value is higher than for long

time records, and there is little change in probability for nÀ 1. Because of the reciprocal

power of n, equation (1) can be expressed as linear equation in the logarithmic values of

p and n:

ln[pn(1)] =− ln(n). (2)

It is possible to relate the theoretical probability to the empirical data by utilising an

expectation value forN stations defined as En =Npn(1). Then the theoretical probability

pn(1) can be compared with Ên/N (this quantity is henceforth referred to as the ’record-

density’), where Ên is the empirical estimate of En. For each sequence, let Υ(xn) be 1 if

the value xn is a new record, and otherwise zero:

Υ(xn) =































































0 for xn ≤max[x1, x2, ..., xn−1]

1 for xn >max[x1, x2, ..., xn−1]

(3)
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Then, for N parallel observations Ên =
∑

Υ(~xn), summing the simultaneous record-

events.

The expected number of records for a single stationary time series of length n can be

estimated according to E(n) =
∑n

i=1 pi(1). A similar aggregated statistic can be estimated

for a network of stations according to

Ê(n) =

n
∑

i=1

Êi/N. (4)

A small number of missing values does not have a significant effect on the aggre-

gated analysis, since the record-densities Ên/N are taken as the mean number of records

over valid parallel observations only. Missing values reduces the number of independent

variables, hence making the estimates less precise. In this study, the focus has been on

the aggregated statistics as opposed to a single series, and the term ’estimated number

of record’ will henceforth refer to equation (4).

Note that the expression for the probability in equation (1) does not describe a

p.d.f. and
∫

pn(x)dx 6= 1∗. The analysis of Benestad (2003) demonstrated through sets of

Monte-Carlo simulations that the mathematical framework given by equations (1) and

(2) provide a good description of the record-event incidence, and that E(n) =
∑n

i=1 1/i

gives a good estimate of the number of record-events in a series with iid random values

simulated through Monte-Carlo integrations.

It can furthermore be shown that the probability of seeing at least one new record-

event in many parallel independent series of length n increases with the number of series

N :

∗ Therefore, the expected number records for the entire record E(n) cannot be estimated using the

expression
∫

npn(1)dn, but must involve an elaborate chain of combined conditional probabilities for

series of lengths i= 1...n.
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PN
n (1) = 1−

(

1−
1

n

)N

. (5)

The dashed curve in Figure 2 shows the probability of seeing at least one new record

for measurement i= 1, 2, ..., n in a set of N independent series, according to equation (5).

For N = 17× 12 = 204 there is a good chance of seeing new parallel record-values, even

after a 100 measurements (years), in contrast to a single series and to the expectation

number divided by the number of series (En/N = pn(1); solid black). Because the low

values of En/N and the persistence of high PN
n (1) for high n, the deviation from the

record-statistics from iid becomes more clear for higher values of n (i.e. long series).

It is important to test whether the occurrence of record-events deviates significantly

from the expected rate. The iid tests described here provide a simple and practicable

means to examine sequences for whether they are non-stationary, with an emphasis on

extremes. A set of Monte-Carlo integrations was used to test the actual observations

with the theory, involving 1000×N stochastic independent and stationary (all values are

drawn from the same distribution) Gaussian series of same length as the observations,

produced with a random number generator∗. The Monte-Carlo simulations through out

this study involved replacing the actual station observations with stochastic numbers

(X→XMC), preserving the dimensions (n×N) of the data matrix. The record-statistics

for each of these replacements was obtained through identical subsequent processing to

that of the real observations. Hence the record-time statistics from the Monte-Carlo

simulations are ensured to belong to the same universe as the observation-based analysis,

as Ên/N can only take values i/N for i= 0, 1, ..., N in the Monte-Carlo simulations

as well as in the analysis of the station series. There were two types of Monte-Carlo

∗ The rnorm() function in R which returns random values pertaining to a Gaussian distribution of zero

mean and unit standard deviation.
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results obtained in this study: i) confidence intervals for χ2-type tests, and ii)confidence

intervals for the estimated number of record-events (Ê). For the first kind, the χ2-statistic

null-distribution was derived from 1000 corresponding values of Ên/N calculated using

stochastic numbers (XMC) instead of actual observations (X). The confidence interval

for Ê was based on a null-distribution derived from 1000 estimates of Ê , each derived

from N stochastic series of length n instead of actual observations. The same procedure

was used as for the observations (equation (4)).

Results

The timing of the record-events can be seen in Figure 3, which shows the timing of record

events found when time runs forwards (lower part of the figure, henceforth referred to as

the ’forward’ analysis) as well as backward in time (’backward’ analysis, upper part). It

is apparent from Figure 3 that the number of records becomes much more rare with time

(number of observations) in case of the ’backward’ analysis compared to the ’forward’

analysis. This difference is consistent with a long-term positive trend and the series being

non-stationary, suggesting that the data are inconsistent with the null-hypothesis of being

iid. There are only a few indications of the record-events taking place simultaneously

(clusters of points) after the first few years (clustering in the beginning is expected). In

the ’forward’ analysis, there is a slight tendency of clustering of records, whereas such

clusters of record-events are virtually absent in the ’backward’ results. The few clusters

seen in Figure 3 may be an indication of some dependency among the sequences as well

as within these in terms of times when new records are set. The effect of dependencies

will be examined more closely later on.

Empirical estimates are obtained for the expectation value En of number of new
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parallel records seen at the nth observation for a set of 17× 12 independent series, and

these estimates can be compared with the expected number of record-events. Figure 4a

shows such a comparison, where the probability is plotted with the record-densities, which

is defined as the estimated expectation value Ên divided by the number of records N . In

general, the empirical estimates at first sight appear to follow the expected values, albeit

with some deviations from the confidence region. The relationship between the theory

and empirical data can be scrutinised in more detail if the log-relations in equation (2)

are used, and Figure 4b shows that the empirical data do not lie on a straight line as a

good fit would do. Rather, the points representing the ’forward’ analysis suggest a higher

than expected record-densities toward the end of the series. A type of χ2-test∗ applied to

Êi/N and pi(1); i= 1, 2, ..., n suggests that these distributions are statistically different

at the 5% level (using the first type of Monte-Carlo simulation described above). The

results from the ’backward’ analysis also suggest a deviation from the null-hypothesis

of iid, but not with a statistical significance at the 5% level. This kind of asymmetry

can arise from slight tendency of clustering of record-events in the ’forward’ analysis

(Figure 3).

A different line of tests can be performed on the expected number of records E(n)

(Figure 5) for a single series or a combination of series. The latter gives more precise

results and obtains higher statistical power. Here, the value of E(n) is taken as the mean

over all the stations and months: Ê = (1/N)
∑n

i=1 Êi. The expression E(n) =
∑n

i=1 1/i

can be approximated as ln(n) for large values of n (i.e. the summation is replaced by

an integral), and E(n)≈ ln(n), so that an exponential scale can be used for the y-axis

to reproduce the approximately linear relation between exp[Ê(n)] and n. The 95% confi-

∗ a standard χ2-test (Wilks, 1995, p. 133, eq. 5.18) applies to p.d.f.s, whereas in this case a similar

methodology is applied to pn(1) which is not a p.d.f. The test statistic is
∑

i=1

(Êi/N−pn(1))2

pn(1)
.
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dence region is again estimated using Monte-Carlo simulations with 1000×N stochastic

series. The comparison between the null-hypothesis of iid values and the empirical data

in Figure 5 indicates that the incidence of record-events is initially low in the early part

of the record for the ’forward’ analysis, but increases and is high toward the end. Con-

versely, the ’backward’ analysis yields a high rate of new records in the beginning and

low frequency towards the end.

The two types of iid-tests (χ2-based and E(n)) yield slightly different results, as the

latter gives a stronger indication of a deviation from iid. This difference leads on to the

question of whether this difference can be attributed to dependencies.

Benestad (2003) examined the effect of serial correlation on the expected number of

records through a set of Monte-Carlo simulations (ÊMC(n)), and found the central loca-

tion of the ÊMC(n) distribution to be insensitive to serial correlation (dependencies). In

this context, dependencies imply a smaller effective number of parallel sequences N . Two

identical series would not alter the number of records Ê(n) since its derivation involves

the mean record-event of the series. The sensitivity of ÊMC(n) to N was explored fur-

ther through a set of Monte-Carlo simulation (Figure 6; open circles), and corresponding

confidence limits were estimated (shown as lines). A linear least-squares regression was

applied to the 2.5% and 97.5% quantiles of ÊMC(n) versus log(n) since these approx-

imately formed a linear relationship, and Table 2 lists the results of the regression for

different values of N . In accordance with Benestad (2003), the values for Ê(n) were insen-

sitive to N , whereas the confidence interval was smaller for larger N . Hence, dependencies

affect the statistical significance but not the number of records Ê(n). A similar exercise

was carried out to examine the effect of dependencies on the χ2-type test (Figure 6; solid

grey circles). The mean value of the χ2
MC(n) distributions is more sensitive to N than

the Ê(n) statistic. The 95% confidence interval of χ2
MC(n) was also sensitive to N . In
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other words, Monte-Carlo simulations with different values for N show that the values

of Ê(n) are insensitive to the inter-sequential dependencies whereas χ2 is more sensitive,

and the confidence interval for both are clearly affected by the number of independent

series.

In order to study the effect of potential serial and inter-station dependencies even

further, the data matrix was sub-sampled by selecting only 4 instead of 12 months per

year, each of which separated by two intervening months. Different months were selected

from the most adjacent stations in order to reduce the effects of spatial correlations, as

lagged inter-station cross-correlations are smaller than simultaneous inter-station corre-

lations. Table 3 shows which months were selected from each station series, Figure 7

shows a plot of the correlation matrix, and Figure 8 shows that there are few coinciding

record-events, suggesting generally low and insignificant cross-correlations. The analysis

shown in Figure 5 was repeated for the subset (N = 68) and the results are presented in

Figure 9: the results from the sub-set suggest that the series are non-stationary and not

merely deviant from iid.

To test of the sensitivity of the iid testing to the type of distribution, a new set of

Monte-Carlo simulations was conducted, replacing the normal distribution with gamma,

generalised extreme value distribution (GEV), and binomial distributions (rgamma(),

rgev(), rbinom() respectively). The gamma and GEV distributions used three different

shape parametres ([1, 10, 0.1] and [1,10,-1] respectively) and the Binomial distribution

was constructed by taking the number of trials to be 1000 and a probability p= 0.1. The

value of Ê(n) (n=107) were 5.246532, 5.243208, 5.244004, 5.244242, 5.246963, 5.244904,

5.248688, and 4.918285 for the normally distributed, the 3 gamma distributions, the 3

GEV distributions, and the Binomial distribution respectively. With the exception of the

Binomial distribution, all the distributions essentially gave the same relationship between
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Ê(n) and n (Figure 10).

Discussion & Conclusions

The reason why the Binomial case deviates from the others at n≥ 10 is that this distribu-

tion typically produces only ∼ 50–60 different descrete values for each set of simultaneous

realisation (~xn) of random numbers, whereas the other distributions yield ∼N different

values (rational numbers). In theory, the Binomial distributions with 1000 trials pro-

duces descrete numbers xi ∈ [0, 1, 2, ..., 1000]. The effect of constraining the values to a

small finite set can be illustrated by considering a simplified ideal case where xi consist

of random descrete numbers but with xi ∈ [x1, x2, x3] (analogous to states in quantum

mechanics), i= 1, 2, ..., n. Then Ê(n) can never exceed the value of 3, regardless of how

long the series is. This is true for both ’forward’ and ’backward’ analysis. Hence, for

discrete numbers following the Binomial distribution, the probability for setting a new

record-value pn(1) 6= 1/n because the values of X are confined to a finite set of descrete

values and many ties are present. The Binomial distribution results illustrate one limita-

tion of the iid tests, that they only truely work for unconstrained rational numbers and

not for series holding descrete levels with a small and finite number of levels (< n). This

’finite set’ aspect of the method may have relevance for cases where instruments have

a fixed range, the readings are truncated to a few decimal places, and the instrument’s

upper range is close to the highest readings. If the highest values are cut-off, then both

’forward’ and ’backward’ analysis will yield too low values for Ê(n) for large values of n.

In this respect, low Ê(n) in both ’forward’ as well as ’backward’ analysis may suggest

poor instrument performance.

The record-statistics described here only utilises part of the information contained
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in the data, and one may argue that it has a low statistical power. While this argument

may be valid for a single series, the iid testing is well-suited for aggregating many dif-

ferent parallel series, regardless of the distribution of the individual sequence, and such

aggregations improve the statistical power of the analysis as long as the criterion of in-

dependence is valid. Therefore the iid tests are well-suited for studying global change.

Furthermore, the advantages of the iid tests performed here are their simplicity and that

they make no assumptions about the distribution of the data. Also, these iid tests are

fundamentally different to other types of extreme value analysis (e.g. general extreme

value distributions) and hence serve as a valuable complement.

The null-hypothesis of iid random variables was rejected at the 5% confidence level in

all the tests, except for χ2-test of the ’backward’ analysis of the record-density. One reason

why this ’backward’ test did not detect any unexpected record-events may the clustering

in time of record-events may have caused an asymmetry in the χ2 statistic. A clustering

in either ’forward’ or ’backward’ analysis may be sufficient to indicate dependencies

(dependencies do not vanish by changing order). In this case, the test of number of

record-events Ê(n) appears to be superior to the χ2-test because it is less sensitive to

dependencies, and both the ’forward’ and ’backward’ analyses indicate that the number

of record-events is outside the 95% confidence interval after 1985. The Ê(n) statistic may

be more sensitive with larger n since dE(n)/dn→ 0 as n→∞ for iid processes whereas

non-stationarities often lead to persistently high frequency of new record-events.

The results from the record-event analysis have indicated that the empirical data

are inconsistent with the null-hypothesis of iid since new record-warm monthly mean

temperatures are observed at a higher rate than a similar set of stationary series of

independent values would imply. If dependencies can be ruled out, then this is a test of

stationarity with respect to extreme values and has implications for studies on extremes.
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For instance, extreme value distributions (Coles, 2001) used for inferring return-values

and return-periods may provide spurious results since the tails of the distributions may

change in the future as a result of such non-stationarities. Figure 11 illustrates this by

presenting an analysis of return-values and return-periods for the Central England August

Temperature based on a GEV∗. Two GEV fits have been found for the first (grey) and

the second half (black) of the series, and a general increase in the return-values between

these two periods is evident. This increase is also consistent with the notion of non-

stationarity (since ’backward’ Ê(n) is below whereas ’forward’ is within the upper range

of the 95% confidence interval) and a shift in the tail of the distribution. However, in

spite of non-stationarities, return-values and periods obtained through GEV modelling

may still be useful concepts if they are considered as quantiles summarising the marginal

distribution of the data.

A simple test against non-stationarity based on the fact that the 95% confidence

intervals are close to linear in log(n) can be utilised to indicate whether the GEV results

are representative for the future or not. A regression analysis (Table 2) gives the linear

relationship between the lower and upper confidence limits for a number of N . In this

case, the high number of observed record-events for the GISS series suggests that the

GEV may over-estimate the return-period (or under-estimate return-value) for future

events, assuming the trend continues.

The analysis revealed that the monthly mean GISS temperatures are not station-

ary, but exhibit a positive long-term trend and inter-decadal fluctuations. A long-term

trend may constitute a climate change, possibly caused by anthropogenic greenhouse

gases (Houghton et al., 2001). However, other factors may also affect the climate, such

∗ Applying a general extreme value (GEV) distribution from the evd package (Stephenson, 2003) in R

and using all values greater than the 75% percentile to fit the GEV.
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as landscape changes or solar activity. The presence of so-called “urban heat islands” and

other inhomogeneities have not been accounted for in this analysis (Peterson, 2003), and

the cause for the change in the data has not been identified in this study. It is interesting

to note the recent record-warm summer months in Europe for 2003 (Schär et al., 2004),

which may be consistent with the conclusion of this study that new record-events are

occurring more frequently than expected.
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TABLE 1. A list of long station seriess from the GISS climate station temperature series with details

about population, coordinates and record length. A subset of these stations, marked in column 1, was

selected to reduce spatial dependencies: only 17 out of these 42 stations were used for the subsequent

analysis.
Location population Latitude longitude start stop

◦N ◦E year year
1 Aberdeen/Dyce 210000 57.2 -2.2 1871 2003

Akola 168000 20.7 77.1 1875 2003
Bangalore 1654000 13 77.6 1875 2003
Belfast/Alder 552000 54.6 -6.2 1834 2003
Berlin-Tempel 3021000 52.5 13.4 1701 2003

2 Bismarck/Mun. 50000 46.8 -100.8 1875 2003
Bombay/Cola 5971000 18.9 72.8 1842 2003

3 Buenos Aires 9927000 -34.6 -58.5 1856 2003
Christchurch 165000 -43.5 172.5 1864 2003

4 Concord Usa 36000 43.2 -71.5 1871 2003
Curitiba 844000 -25.4 -49.3 1885 2003
Dar-El-Beida 1365000 36.7 3.2 1856 2003
Dijon 150000 47.3 5.1 1845 2003
Dublin Airpor 680000 53.4 -6.2 1831 2003
Enisejsk 20000 58.5 92.2 1871 2003

5 Funchal 38000 32.6 16.9 1864 2003
Geneve-Cointr 320000 46.2 6.1 1753 2003

6 Honolulu, Oah 836000 21.4 -157.9 1883 2003
7 Ishigakijima 35000 24.3 124.2 1897 2003

Jacksonville U/A To Waycro 898000 30.4 -81.7 1872 2003
Kharkiv 1444000 50 36.1 1892 2003
Larissa 72000 39.6 22.4 1899 2003

8 Lisboa/Geof 1100000 38.7 -9.2 1854 2003
9 Moskva 8011000 55.8 37.6 1779 2003
10 Nassau Airpor 134000 25.1 -77.5 1855 2003

Omsk 1014000 55 73.4 1887 2003
Poona 1135000 18.5 73.8 1876 2003

11 Portland/Int. 1414000 45.6 -122.6 1873 2003
12 Saentis 0 47.2 9.3 1883 2003
13 Sao Paulo 7034000 -23.5 -46.6 1887 2003

Saratov 856000 51.6 46 1836 2003
14 Seychelles In 0 -4.7 55.5 1894 2003

Strasbourg 252000 48.5 7.6 1801 2003
Tampa/Int.,Fl 1995000 28 -82.5 1825 2003

15 Thessaloniki 482000 40.5 23 1892 2003
16 Thiruvanantha 410000 8.5 77 1837 2003

Trier-Petrisb 100000 49.8 6.7 1788 2003
17 Turuhansk 0 65.8 87.9 1881 2003

Valladolid 228000 41.6 -4.8 1866 2003
Washington/Na 3734000 38.9 -77 1820 2003
Wroclaw Ii 523000 51.1 16.9 1792 2003
Zurich (Town) 718000 47.4 8.6 1836 2003
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TABLE 2. a) Upper and lower levels of 95% confidence interval for number of record-events in one

series as estimated by applying a linear regression to the Monte-Carlo results in Figure 5 assuming the

relationship y = exp(E(n)), x= n, and using a linear relationship between y and x.
Estimate Std. Error t value Pr(>|t|)

Upper
(Intercept) −2.4022 0.5785 −4.15 0.0005

x 2.3658 0.0093 254.34 0.0000
Lower

(Intercept) 2.9810 0.3619 8.24 0.0000
x 1.3730 0.0058 235.98 0.0000

b) Best-fit coefficients for linear relationship between confidence limits and length of sequence

(n) from a series of Monte-Carlo simulations. The coefficients given are for the equation

qi(n) = log[a+ b× n]. The mean value of Ê(n) was insensitive to N .
N q0.025(n) q0.975(n)

a b a b
10 4.29 0.55 -32.65 6.17
20 4.65 0.73 -17.21 4.29
30 4.31 0.92 -11.83 3.70
50 3.83 1.06 -6.56 3.03
68 3.44 1.13 -4.78 2.82
75 3.47 1.15 -5.06 2.75
100 3.59 1.22 -5.27 2.68
204 2.98 1.37 -2.40 2.37
500 2.28 1.50 -0.85 2.10
600 2.24 1.52 -0.91 2.08
1000 1.92 1.58 -0.17 2.01

TABLE 3. Details of the sub-sampling of the station data in order to reduce effects of dependencies.

For each station, only 4 months were used: ’FMAN’ denotes February, May, August and November,

’MJSD’ means March, June, September and December, wheras ’JAJO’ refers to January, April, July,

and October. N = 68.
Months used Station

FMAN Aberdeen
FMAN Bismarck
FMAN Buenos-Aires
MJSD Concord
MJSD Funchal
FMAN Honolulu
FMAN ishigakijima
JAJO Lisboa
JAJO Moskva
FMAN Nassau
MJSD Portland
MJSD Saentis
MJSD Sao Paulo
FMAN Seychelles
FMAN Thessaloniki
MJSD Thiruvanantha
FMAN Turuhansk
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Figure 1. Map showing the climate stations used in the record-event statistics. The named ball

symbols show the locations included in the record-event analysis, whereas the unnamed filled

grey circles show sites excluded for reasons such as spatial correlations or large missing value

gaps.

Figure 2. A comparison between the expectation number divided by the number of series (En/N ;

solid black) and the theoretical probability of seeing at least one new record (PN
n (1); dashed

grey).

Figure 3. The timing of record-events incidents. The lower half of the figure shows ’forward’

analysis whereas the upper part gives the timing of record-events when running backward in

times (’backward’ analysis). The vertical axis represent different sequences (204 in each analysis).

Figure 4. a) The probability of seeing a new record for N = 17× 12 = 204 (17 stations each

with 12 monthly series) series against length of series. b) a Log-log plot showing the relationship

between the theoretical and empirical values of En/N . The grey-filled circles show the results

from the ’forward’ and the diamonds from the ’backward’ analysis. The grey line indicates the

best linear fit between theory and empirical data for the ’forward’ and black for the ’backward’

analysis (merely shown to guide the eye). The dashed lines indicate the diagonal and the bound-

aries of the 95% confidence region. The time axis is the number of observations, which in this

case is one per year. The ’χ2-results’ shown in panel b are from a ’standard χ2-test’, but derived

from the test described in the text, applied to pn(1) and not a p.d.f.

Figure 5. A comparison between the theoretical expected number of record-events and the

observed number as a function of the length of series. The observed numbers are taken as the

aggregated value of all N = 17× 12 = 204 series. The vertical axis represent the number of record

events Ê(n) and the horizontal axis gives the length of sequence n.

Figure 6. Monte-Carlo simulations testing the sensitivity of the χ2-type and the Ê(n) tests

to the value of N . Both the mean value (points) and the confidence intervals (lines) of the

distributions are shown.
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Figure 7. The cross-correlation matrix for the station series N = 68 sub-set described in Table 3.

Figure 8. Same as Figure 3 but for the N=68 sub-sample (Table 3).

Figure 9. The iid test shown in Figure 5 repeated for the smaller subset (Table 3) in order to

reduce the effect of potential inter-dependencies and the cross-correlation between the various

series was small (Figure 7).

Figure 10. A comparison between Ê(n) estimated through a set of Monte-Carlo simulations

(N=1000) and n for a number of processes with different p.d.f.

Figure 11. Analysis of return-values and return-periods based on a best-fit GEV. The grey line

shows the fit to the first half of the data whereas the black line shows for the second half. The

figure shows confidence intervals only for the second half of the series (the points and CI for the

first half show similar spread around the grey curve). All values greater than the 75% percentile

have been used to fit the GEV. Test of iid: ’forward’ gives Ê(n) = 7.08 while ’backward’ yields

4.58 (95% confidence interval: 5.25 – 7.67).



34 Benestad

−150 −100 −50 0 50 100 150

−
50

0
50

degrees east

de
gr

ee
s 

no
rt

h

Aberdeen/Dyce

Bismarck/Mun.

Buenos Aires

Concord Usa

Funchal

Honolulu, Oah
Ishigakijima

Lisboa/Geof

Moskva

Nassau Airpor

Portland/Int. Saentis

Sao Paulo

Seychelles In

Thessaloniki

Thiruvanantha

Turuhansk

Figure 1.



Record-events - paper18.tex 35

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability of new records

Different number of independent series
Time

R
ec

or
d 

de
ns

ity

E_n/N   
N= 204    

Figure 2.



36 Benestad

0 20 40 60 80 100

0
1

0
0

2
0

0
3

0
0

4
0

0

Record incidence

Time (years)

S
e

ri
e

s

Figure 3.



Record-events - paper18.tex 37

a

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

New records

25  x 12 monthly mean temperature series
Time

Re
co

rd
 de

ns
ity

E/N forward
E/N backward
p
Null hyp. 95 conf.

b

−4 −3 −2 −1 0

−
5

−
4

−
3

−
2

−
1

0

Expected and observed records

25  x 12 monthly mean temperature series
log(theoretical record density)

lo
g(

E
/N

)

Chi−squared=21.22/16.81 (Monte−Carlo 95% conf.lev.=18.9105)

Figure 4.



38 Benestad

Expected number of record−events

mean observed vs Monte−Carlo (N=1000) simulation
Record length (n)

N
um

be
r 

of
 r

ec
or

d−
ev

en
ts

 / 
E

xp
ec

ta
te

d 
nu

m
be

r

0 10 20 30 40 50 60 70 80 90

1
3.

5
4.

5
5

5.
5

E=cumsum(1/(1:n))
mean E Monte−Carlo: white noise
95% C.I. Monte−Carlo: white noise

Backward Forward

Figure 5.



Record-events - paper18.tex 39

0 200 400 600 800 1000

16
18

20
22

monte−Carlo: testing chi−squared and E v.s. N

N.test= 1000   nt= 107
N

ch
i−

sq
ua

re
d

4

5

6

chi^2
E

Figure 6.



40 Benestad

−1.0

−0.5

0.0

0.5

1.0

10 20 30 40 50 60

10

20

30

40

50

60

Correlation matrix

Testing for dependencies
series

se
rie

s

Figure 7.



Record-events - paper18.tex 41

0 20 40 60 80 100

0
50

10
0

15
0

Record incidence

Time (years)

S
er

ie
s

Figure 8.



42 Benestad

Expected number of record−events

using temporal−spatial subsampling (N=68) simulation
Record length (n)

N
um

be
r 

of
 r

ec
or

d−
ev

en
ts

 / 
E

xp
ec

ta
te

d 
nu

m
be

r

0 10 20 30 40 50 60 70 80 90

1
3.

5
4.

5
5

5.
5

E=cumsum(1/(1:n))
95% C.I. Monte−Carlo: white noise

Backward Forward

Figure 9.



Record-events - paper18.tex 43

0 20 40 60 80 100

1
2

3
4

5

Slope for different distributions and N

n

N
um

be
r 

of
 r

ec
or

ds

Normal
gamma s=1
gamma s=10
gamma s=0.1
GEV s=1
GEV s=10
GEV s=−1
Binomial

Figure 10.



44 Benestad

0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0

16
17

18
19

20
21

22
23

Return Level Plot

−1/log(1−1/Return Period)

R
et

ur
n 

Le
ve

l

Central England August Temperature

 
x

GEV: 1659 − 1830
GEV: 1831 − 2003

Figure 11.


