Lessons learnt from the STARDEX project

http://www.cru.uea.ac.uk/projects/stardex/

The STARDEX team

- University of East Anglia, UK
- King's College London, UK
- Fundación para la Investigación del Clima, Spain
- University of Bern, Switzerland
- Centre National de la Recherche Scientifique, France
- Servizio Meteorologico Regional, ARPA-Emilia Romagna, Italy
- Atmospheric dynamics group, University of Bologna, Italy
- Danish Meteorological Institute, Denmark
- Eidgenössische Technische Hochschule, Switzerland
- Fachhochschule Stuttgart Hochschule für Technik, Germany
- Institut für Wasserbau, Germany
- University of Thessaloniki, Greece

Principles of verification

- Predictor dataset : NCEP reanalysis
- Predictand datasets: "FIC dataset" and regional sets
- Regions
- Stations within regions
- Core indices
- Verification period: 1979-1993 (for compatibility with ECMWF-driven regional models)
- Training period: 1958-1978 & 1994-2000
- Statistics: RMSE, SPEARMAN-RANK-CORR for each station/index (also BIAS & STDEV ratios)

The STARDEX methods

- multiple linear regression
- canonical correlation analysis
- artificial neural networks
- multivariate autoregressive model
- conditional re-sampling & other analoguebased methods
- methods based on a potential precipitation circulation index & critical circulation patterns
- conditional weather generator
- local & dynamical scaling

Partners/regions

	Iberia	Greece	Alps	Germany	UK	Italy
KCL	X				X	
ARPA-SMR		X				X
ADGB						X
AUTH		X				X
USTUTT-IWS & FTS			X	x		
ETH			X		X	
UNIBE			X			
CNRS	X		X			

Iberia (16 stations) Averaged across all seasons, indices and stations 5th & 95th percentiles are also shown

Spearman correlation

Rank of abs(bias)

A few of our key messages

- Skill varies <u>station-station</u>, season-season, index-index, method-method
- But not systematically, so hard to pick single best method in most cases
- Methods/indices with highest corrs. are often not those with lowest bias/rmse
- Generally best winter/worst in summer
- P extremes: persistence better than magnitude/frequency. Occurrence generally better than amount process.

Two 'headlines' from the verification work

- In majority of cases no consistently superior model, so a major recommendation is to use a range of the better SDS methods – just as the recommendation is to use a range of GCMs/RCMs
- For many regions and indices, the skill is unacceptably low for summer rainfall – thus we should not attempt to construct scenarios for these cases

STARDEX robustness criteria for statistical downscaling

- 'Strength and stability' of predictor/predictand relationships
- 'Stationarity' of predictor/predictand relationships
- Uniformity of performance
- Reliability of simulation of predictors

Application criteria for statistical and dynamical downscaling

Method provides:	Y/N	Comments/Notes
Station-scale information	Y	
Grid-box information	-	
European-wide information	-	
Daily time series	-	
Seasonal indices of extremes	Y	
Temporally consistent temperature and precipitation	Y	
Spatially consistent multi-site information	Y	
Temporally consistent multi-site information	-	
Information at sites with no observations	-	
Method requirements :	Relatively high/low	Comments/Notes
Computing resources	High	
Volume of data inputs	Low	
Availability of input data	High	

Performance criteria for statistical and dynamical downscaling

	Relative	Performance	Confidence
	High	Medium	Low
Temperature			
Indices	Txav, Tnav, Tav	Txq90, Tnq10, Tnfd,	
		Txhw90	
Seasons	Winter	Spring, Summer	Autumn
Regions	W Greece, E Greece		
Precipitation			
Indices	Pav	Pxcdd, Pnl90	Pq90, Px5d, Pint, Pf190
Seasons	Winter	Spring, Summer	Autumn
Regions	W Greece	E Greece	Х
Overall perfor	mance:		
	Mean temperature	Good	
	Temperature extremes	Average	
	Mean precipitation	Good	
	Precipitation extremes	Poor	
Optimal spatial scale:		Higher resolution (<2.5°)	
Recommended	l impact applications:		

So that was STARDEX, the next challenge is ENSEMBLES.....

http://www.cru.uea.ac.uk/projects/stardex/

Construction of probabilistic scenarios: WP2B.2 & WP2B.3 Monte Carlo, Bayesian, REA, weighting, scaling, etc. etc.

Probabilistic regional climate scenarios and tools

Three major issues

- Modification of methods for construction of probabilistic scenarios
- Integration of work on climate change and seasonal-to-decadal timescales
- Development of sds tools

Shift of emphasis to SDS tools

- potential danger of black box methods
- need for user documentation/education
- need to specify user requirements
- can multiple methods be incorporated?
- and combined with tools (e.g., weighting tools) for generating PDFs/response surfaces etc?