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HISTORICAL PARALLEL

beginnings: 1950°s — pioneering work by W.H.
Klein

weather prediction

‘specification’ of sfc. weather from large-scale
circulation

NWP 1n similar state to present climate modelling
— unable to provide regional / local details

but now — NWP models are able ...

so — what’s ‘our’ future?



HISTORICAL PARALLEL

NWP still needs (and will need forever) statistical
postprocessing methods

— to de-bias forecasts
— e.g. precipitation, extreme temperatures
imperfections in model physics

incomplete description of physical processes
similar will likely hold for climate models

statistical downscalers (= we) are not bound to
become extinct



PARADOX OF STAT. DOWNSCALING

* 1n application to scenario construction

e problem: extremely high sensitivity to
— method
— predictors

— parameters (no. of PCs, canonical pairs,...)



DATASETS

39 European stations
DJF

1982/83 — 1989/90
daily mean temperature

predictors:
— 500, 1000 hPa heights

— 850 hPa temperature
— 1000/500 hPa thickness



DATASETS

e observed relationships applied to CCCM2
GCM
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e not only amplitude of temperature change
differs

 also spatial patterns

e) POINTWISE REGR., Z5+T8 59) STEPWISE REGR., 7PCs, Z5+T8
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e not only amplitude of temperature change
differs

e also elevation dependence
d) Z5+T8; CCA
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WHY DEPENDENCE ON PREDICTORS?

area averaged change 1n predictors,
2xCQO, — control

predictor | absolute change relative change
Z1000 -13.4 m -13.7
Z500 64.7 m 6/.5
1000/500 78.1m 70.1
thickness
T850 3.68 °C 98.4




WHY DEPENDENCE ON PREDICTORS?

* natural consequence of radiative heating of
troposphere



WHY DEPENDENCE ON PC NUMBER?

For most PCs:
regression coefficients
and
change (2xCO, — control) In PC scores
have the same sign
b contribute to warming



mode regr. coeff. PC score
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mode regr. coeff. PC score
(averaged over change (2xCO,
stations) — control)
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SENSITIVITY TO DS. MODEL

e sensitivity to the number of PCs

— can be explained in physical (meteorological)
terms

— matter of fact, not fictitious
e similarly for

— other methods (e.g., CCA)

— sensitivity to predictors

— ¢flc.
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WHICH MODEL?

e one clear fact: degree of fit with observed
data (whatever measure 1s used) cannot be
the only criterion!!!

corr =0.95




PRINCIPAL PROBLEM
(PARADOX) of statistical downscaling

Models are fitted to variability on time
scales much shorter than on which
climatic change proceeds



REMEDY for the PARADOX

e possible REMEDY — 2 ways:

— validation: use appropriate criteria

— a prior1 selection of predictors



REMEDY — VALIDATION

e validate trends (but recent and future
trends may result from different
mechanisms!)

e check ability to simulate contrasting
climatic states (cold / warm; dry / wet
years) (Similar objection)

e verify consistency with driving GCM (but
GCM may be wrong!)



REMEDY - PREDICTOR(s) SELECTION

(1) use predictors retlecting radiative heating of
atmosphere (temperature, thickness, mid-
tropospheric heights)

BUT:

— this may work for temperature; what about other
variables (precip, cloudiness, ...) ?

— circulation changes may also contribute £ circulation-
only predictors cannot be ruled out a priori

— 1mpossible to decide a priori how to mix ‘radiative’ and
‘circulation’ predictors



REMEDY - PREDICTOR(s) SELECTION

* (2) use the same variable as predictand

. downscaling reduces to interpolation

e BUT:

— can 1t work for highly spatially variable
quantities with short autocorrelation distance
(precipitation) ?

— does 1t meet basic requirements of downscaling?
e well simulated by GCM

e explains large portions of variance



REMEDY - PREDICTOR(s) SELECTION

* (2) use the same variable as predictand

. downscaling reduces to interpolation
« BUT (cont.):

— predictor X predictand relation 1s purely
statistical; 1f predictor 1s different, ‘physical’
relationships are implicitly included



CRITERIA OF VALIDATION

* majority of studies: only fit to observed data
— rmse, correlation
* mean, std.deviation — easy to reproduce by

definition (in most cases) — unnecessary to
validate



CRITERIA OF VALIDATION

e seldom, but potentially important in various
applications

— higher-order statistical moments, extreme
values, distribution tails

— time structure
— spatial structure

— intervariable relationships

— trends / contrasting climatic states




STATISTICAL vs. DYNAMICAL
DOWNSCALING

e statistical downscaling — tendency to be
viewed as inferior, simplistic

— (example — ENSEMBLES project where it is an appendix
of RCM efforts)

e but: the few comparison studies £ statist.
and dynam. downscaling have similar
performance



STATISTICAL vs. DYNAMICAL
DOWNSCALING

e + of downscaling:
— computationally simple

— provides local information

e + of RCMs:

— physical consistency among variables



STATISTICAL vs. DYNAMICAL
DOWNSCALING

* not competing, but complementary
techniques
* both have caveats that are frequently

— not admitted

— not reconciled



NONLINEAR METHODS

o different ways of introducing nonlinearity

— nonlinear transfer functions
 usually neural networks

 others — used scarcely

— data stratification, application of separate
transfer functions 1n different classes



NONLINEAR METHODS

e comparisons linear X nonlinear
— very rare

— ambiguous results
e superiority of nonlinear methods
e similar performance

e superiority of linear methods



NONLINEAR METHODS - DATA

e winter season (DJF)
e 35 winters: 1958/59 — 1992/93

e predictand
— daily max temperature
— & stations across Europe

e predictors

— 500 hPa heights + 850 hPa temperature

— NCEP reanalyses, 5 x 5 deg. grid
— large window: 25N — 80N / 50W — 55E



NONLINEAR METHODS - DATA
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NONLINEAR METHODS - VALIDATION

 cross-validation
— 1 season held out
— models built on remaining 34 seasons
— repeated 35 times
e accuracy in terms of correlation coetficient

— other measures (rmse, mae) yield similar results



Results — neural networks

gridpoint values linear regression
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Results — classification
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NONLINEAR METHODS - SUMMARY
OF RESULTS

e linear AND nonlinear methods — pointwise
regression better than regression of PCs

e pointwise models: linear methods superior

o stratified data (use of classification)
— slightly worse than unstratified data
— 1ncreasing number of classes degrades the fit

— similar for 1000 hPa heights, k-means clustering
method

e Tmin — similar to Tmax



Why are nonlinear methods
Inferior?
* neural networks: too many parameters to

determine

e classifications:
— gain by better fit in subsamples
— more than compensated for

— by loss due to smaller sample sizes



Is linear downscaling really
the best?

indication, not proof

pointwise linear regression of Z500+T850 — best
of examined methods
(incl. CCA, SVD, and other height + thermal predictors)

is it best of all methods?

NN can surpass linear methods t the best
linear method 1s simple (has small number of
individual predictors)

other variables — potentially a different outcome



WHAT DO | MISS IN (many)
DOWNSCALING STUDIES

comparisons with older / simpler methods

verification whether assumptions of
statistical downscaling are met

broader validation driven by impact
researchers’ demands

recognition of sensitivity of climate change
estimates to the methodology



MY STRONGEST RECOMMENDATION

* include the ability to simulate recent trends /
contrasting climate states among the
necessary requirements posed on
downscaling methods




IS STATISTICAL
DOWNSCALING
CONDEMNED TO DEATH?

| believe NOT.



