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HISTORICAL PARALLEL

• beginnings: 1950’s – pioneering work by W.H. 
Klein

• weather prediction 
• ‘specification’ of sfc. weather from large-scale 

circulation
• NWP in similar state to present climate modelling 

– unable to provide regional / local details
• but now – NWP models are able …
• so – what’s ‘our’ future?



HISTORICAL PARALLEL

• NWP still needs (and will need forever) statistical 
postprocessing methods
– to de-bias forecasts
– e.g. precipitation, extreme temperatures

ç imperfections in model physics
ç incomplete description of physical processes

• similar will likely hold for climate models
• statistical downscalers (= we) are not bound to 

become extinct



PARADOX OF STAT. DOWNSCALING
• in application to scenario construction
• problem: extremely high sensitivity to

– method
– predictors
– parameters (no. of PCs, canonical pairs,…)



DATASETS
• 39 European stations
• DJF
• 1982/83 – 1989/90
• daily mean temperature
• predictors: 

– 500, 1000 hPa heights
– 850 hPa temperature
– 1000/500 hPa thickness



DATASETS
• observed relationships applied to CCCM2 

GCM 
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• not only amplitude of temperature change 
differs

• also spatial patterns
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• not only amplitude of temperature change 
differs

• also elevation dependence
d) Z5+T8; CCA

SONSANFKGDAVRTEZURBAS

10

8

6

4

2

0

-2

Z5T8_C1 

Z5T8_C2

Z5T8_C3

Z5T8_C4

Z5T8_C5

Z5T8_C6

Z5T8_C7



WHY DEPENDENCE ON PREDICTORS?

area averaged change in predictors, 
2xCO2 – control

98.43.68 °CT850

70.178.1 m1000/500 
thickness

67.564.7 mZ500

-13.7-13.4 mZ1000

relative changeabsolute changepredictor



WHY DEPENDENCE ON PREDICTORS?
• natural consequence of radiative heating of 

troposphere



WHY DEPENDENCE ON PC NUMBER?
For most PCs: 
regression coefficients

and

change (2xCO2 – control) in PC scores
have the same sign
Ł contribute to warming
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SENSITIVITY TO DS. MODEL

• sensitivity to the number of PCs 
– can be explained in physical (meteorological) 

terms
– matter of fact, not fictitious

• similarly for 
– other methods (e.g., CCA)
– sensitivity to predictors
– etc. 
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• all models are good in 
terms of rmse

• mean temperature change 
varies from +0.5 to +8.5 
deg. C

• other aspects also vary 
widely

• so how to decide 
which model to 
prefer???



WHICH MODEL?

• one clear fact: degree of fit with observed 
data (whatever measure is used) cannot be 
the only criterion!!!

corr = 0.95



Models are fitted to variability on time 
scales much shorter than on which 

climatic change proceeds

PRINCIPAL PROBLEM 
(PARADOX) of statistical downscaling



REMEDY for the PARADOX

• possible REMEDY – 2 ways: 
– validation: use appropriate criteria
– a priori selection of predictors



REMEDY – VALIDATION

• validate trends (but recent and future 
trends may result from different 
mechanisms!)

• check ability to simulate contrasting 
climatic states (cold / warm; dry / wet 
years) (similar objection)

• verify consistency with driving GCM (but 
GCM may be wrong!)



REMEDY – PREDICTOR(s) SELECTION
• (1) use predictors reflecting radiative heating of 

atmosphere (temperature, thickness, mid-
tropospheric heights)

• BUT:
– this may work for temperature; what about other 

variables (precip, cloudiness, …) ?
– circulation changes may also contribute Ł circulation-

only predictors cannot be ruled out a priori
– impossible to decide a priori how to mix ‘radiative’ and 

‘circulation’ predictors



REMEDY – PREDICTOR(s) SELECTION
• (2) use the same variable as predictand

Ł downscaling reduces to interpolation
• BUT:

– can it work for highly spatially variable 
quantities with short autocorrelation distance 
(precipitation) ?

– does it meet basic requirements of downscaling?
• well simulated by GCM
• explains large portions of variance



REMEDY – PREDICTOR(s) SELECTION
• (2) use the same variable as predictand

Ł downscaling reduces to interpolation
• BUT (cont.):

– predictor x predictand relation is purely 
statistical; if predictor is different, ‘physical’ 
relationships are implicitly included



CRITERIA OF VALIDATION

• majority of studies: only fit to observed data
– rmse, correlation

• mean, std.deviation – easy to reproduce by 
definition (in most cases) – unnecessary to 
validate



CRITERIA OF VALIDATION

• seldom, but potentially important in various 
applications
– higher-order statistical moments, extreme 

values, distribution tails
– time structure
– spatial structure
– intervariable relationships
– trends / contrasting climatic states



STATISTICAL vs. DYNAMICAL 
DOWNSCALING

• statistical downscaling – tendency to be 
viewed as inferior, simplistic
– (example – ENSEMBLES project where it is an appendix 

of RCM efforts)

• but: the few comparison studies Ł statist. 
and dynam. downscaling have similar 
performance



STATISTICAL vs. DYNAMICAL 
DOWNSCALING

• + of downscaling:
– computationally simple
– provides local information

• + of RCMs:
– physical consistency among variables



STATISTICAL vs. DYNAMICAL 
DOWNSCALING

• not competing, but complementary 
techniques

• both have caveats that are frequently
– not admitted
– not reconciled



NONLINEAR METHODS

• different ways of introducing nonlinearity
– nonlinear transfer functions

• usually neural networks
• others – used scarcely

– data stratification, application of separate 
transfer functions in different classes



NONLINEAR METHODS

• comparisons linear x nonlinear
– very rare
– ambiguous results

• superiority of nonlinear methods
• similar performance
• superiority of linear methods



NONLINEAR METHODS - DATA

• winter season (DJF)
• 35 winters: 1958/59 – 1992/93
• predictand 

– daily max temperature
– 8 stations across Europe

• predictors
– 500 hPa heights + 850 hPa temperature
– NCEP reanalyses, 5 x 5 deg. grid
– large window: 25N – 80N   /   50W – 55E



NONLINEAR METHODS - DATA

-15 -5 5 15 25 35
35

40

45

50

55

60

65

70

SMOLENSK (239)

SALAMANCA (790)

VALENTIA (9)

ZUGSPITZE (2960)

PRAGUE (191)BAMBERG (282)

HOHENPEISSENBERG
(977)

SODANKYLA (179)



NONLINEAR METHODS - VALIDATION
• cross-validation

– 1 season held out
– models built on remaining 34 seasons
– repeated 35 times

• accuracy in terms of correlation coefficient
– other measures (rmse, mae) yield similar results



Results – neural networks
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Results – classification

PRAGSMOLVALEHOHEBAMBSALAZUGSSODA

100

90

80

70

60

50

40

pointwise linear 
regression

T-mode PCA 
classification of 500 
hPa heights; 4, 11, 

18 classes



NONLINEAR METHODS – SUMMARY 
OF RESULTS

• linear AND nonlinear methods – pointwise 
regression better than regression of PCs

• pointwise models: linear methods superior
• stratified data (use of classification)

– slightly worse than unstratified data
– increasing number of classes degrades the fit
– similar for 1000 hPa heights, k-means clustering 

method
• Tmin – similar to Tmax



Why are nonlinear methods 
inferior?

• neural networks: too many parameters to 
determine

• classifications: 
– gain by better fit in subsamples 
– more than compensated for
– by loss due to smaller sample sizes



Is linear downscaling really 
the best?

• indication, not proof
• pointwise linear regression of Z500+T850 – best 

of examined methods
(incl. CCA, SVD, and other height + thermal predictors)

• is it best of all methods?
• NNs can surpass linear methods ç Ł the best 

linear method is simple (has small number of 
individual predictors)

• other variables – potentially a different outcome



WHAT DO I MISS IN (many) 
DOWNSCALING STUDIES

• comparisons with older / simpler methods
• verification whether assumptions of 

statistical downscaling are met
• broader validation driven by impact 

researchers’ demands
• recognition of sensitivity of climate change 

estimates to the methodology



MY STRONGEST RECOMMENDATION
• include the ability to simulate recent trends / 

contrasting climate states among the 
necessary requirements posed on 
downscaling methods



IS STATISTICAL 
DOWNSCALING 

CONDEMNED TO DEATH?

I believe NOT. 


