Dynamical downscaling of Orographic Precipitation

Idar Barstad Bjerknes Centre for Climate Research University of Bergen

GeoExtreme (NFR)

Motivation

Westcoast of Norway, September 2005

Motivation

Brig-Sveits - 1993

Many types of geo-extremes depend on (orographic) precipitation

Precipitation - types

Precipitation associated with

- fronts
- convection
- orographic forcing

Orographic Precipitation

- Orographic precipitaiton is an order of magnitude bigger than frontal precipitation.
- Due to poor representation of microphysics, numerical models does not forecast (or downscaled) OP-events well.

Orographic Precipitation

Moist air is forced over mountains

Principle – orographic precipitation

Given the terrein, we are left with two controlling factors:

Vertical motion
('Airflow dynamics')

2) Formation hydrometeors('Micro-physics')

Linear model

(Smith & Barstad, 2004 JAS)

- Linear (airflow dynamics and micro-physics)
- Condensation rate (S) is vertically integrated
- Assumes near saturation
- Constant U (wind speed) and T (cloud time delay)

Ρ

qcl=cloud water density qf=hydro-meteor density τ =micro-phys. time delay C_w =lifting sensitivity factor

 σ =Uk+Vl; intrisic freq. **m**=vertical wave number **h**=terrain **H**_w=scale height of water vapor

$$\vec{U} \cdot \nabla q_{cl} = S(x, y) - (q_{cl} / \tau_{cl})$$

$$\vec{U} \cdot \nabla q_f = q_{cl} / \tau_{cl} - q_f / \tau_f$$

Precipitation in Fourier Space:

$$\hat{P}(k,l) = \frac{C_w i \sigma \hat{h}(k,l)}{[1 - imH_w][1 + i\sigma\tau_{cl}][1 + i\sigma\tau_f]}$$

Linear method

A simple method gives promissing results

http://www.gfi.uib.no/~idar/Stopex_forecast.html

Downscaling –linear method

Særheim – Klepp 6hrs acc. precip. **Downscaling - daily**

Stord Acc. Precip. mm/24hrs

Conclusions

Dynamical downscaling may help us part of the way

Q: Will this improve the accuracy of statistical downscaling?

STOPEX

Observasjonar

Transport av fukt

$$Influx = \rho q UH_w$$

- ρ = tettheit til lufta
- q = spesifik fukt
- U = vind
- H_w = skalahøgde for fukt i

atmosfæren

 $C_w = Iyftingskonstant$

 $S(x) = C_w \rho q U dh / dx$

Veldig avhengig av temperaturen ved bakken