Applying statistical downscaling to environmental management and resource assessment

Rob Wilby Climate Change Science Manager rob.wilby @environment-agency.gov.uk

Adaptation can involve difficult decisions...

...and costly investments in major assets

etter place

Climate model uncertainty and adaptation response...

Downscaled precipitation scenarios for the River Thames under A2 emissions in the 2050s

Talk outline

Derwent reservoir during the 1995 UK drought. Photo courtesy of Nick Jackoby

Key questions

- Why are we downscaling?
- How should we apply downscaling within a probabilistic framework?
- What are the outstanding scientific challenges for the downscaling community?

Why are we downscaling? Appraisal of adaptation options for the River Kennet

creating a better place

Long-term nutrient enrichment of the River Thames, 1930-2000

Environment

Agency

'Luxuriant' macrophyte growth

Appraisal of adaptation options

Five scenarios

- Baseline conditions under HadCM3 A2 emissions
- *Fertiliser use reduced by 50%*
- Deposition of atmospheric pollutants reduced by 50%
- Water meadow creation (4 x surface area of river)
- Combined approach with 25% reduction in fertiliser and deposition, water meadow creation (2 x surface area)

Statistical DownScaling Model (SDSM) and predictor variable archive

CATCHMOD daily river flow changes under A2 emissions

Julian day 2080s

Environment

Agency

Daily precipitation and PE downscaled for the River Kennet using three GCMs for the 2080s

INCA-N model of soil and instream nutrient concentrations

INCA-N simulation of Nitrate-N Straight Agency Under A2 emissions: headwater

Concentrations exceeded 5% of the time

Concentrations exceeded 5% of the time

Why downscale?

- Link scenarios to space-time scale of impact model (INCA-N) to explore complex transient response at sub-grid scales
- Assess the impact of future extreme (drought) events
- Generate exotic predictands (such as PET) that are not directly available from GCMs
- Explore uncertainty in future (summer) climate due to GCM or the outcomes of mitigation options
- Rapid assessment of adaptation measures that will be sustainable under climate change

How to downscale within a probabilistic framework? Assessing uncertainties in low flows for the River Thames

creating a better place

Impacts assessment using mega-model ensembles

Environment Agency

Frequency distribution of global mean temperature response to doubled CO₂ produced by CP.net, compared with IPCC (2001) range.

Uncertainties due to GCM/ downscaling pair

Environment

Agency

An Impacts Relevant Climate Prediction Index

	Summer		Winter	
Model	Bias (%)	Weight	Bias (%)	Weight
CGCM2	52.1	0.138	42.2	0.074
CSIRO	14.3	0.503	6.0	0.522
ECHAM4	49.6	0.145	16.1	0.194
HadCM3	33.6	0.214	14.9	0.210
NCEP	7.6	n/a	4.8	n/a

This IR-CPI is based on the skill of the GCM/downscaling pair for effective rainfall in the Thames basin

Uncertainty due to low flow model structure

Environment

Agency

Derived from observed daily rainfall and PE

Uncertainty due to water resource model parameters

Environment

Agency

An experimental framework for assessing uncertainties

- 4x GCMs, 2x emissions, 2x downscaling methods, 2x low flows models, 100x parameter sets
- Weight GCMs by modified Climate Prediction Index
- Weight low flow model structures by r_{adi} statistic
- Weight low flow model parameters by N-S score
- Emissions and downscaling method unweighted
- Monte Carlo simulation (2000+ runs)
- Evaluate using (Q95) low-flow index for River Thames

Uncertainties due to emission scenario

Uncertainties due to GCM

Uncertainties due to downscaling method

Environment Agency

Uncertainties due to low flow model structure

Environment

Agency

Uncertainties due to low flow \widehat{O} Environment model parameters (HadCM3, A2)

Combining all sources of uncertainty

Environment

Agency

Downscaling is a significant component of uncertainty

Environment Agency

Conditional probabilities of lower summer river flows in the Thames by the 2080s

What are the outstanding scientific challenges? A proposed research agenda for the downscaling community

creating a better place

Please can we have:

- NO MORE COMPARISON STUDIES!!!
- A dossier of best practise and case studies where downscaling has actually shaped decision-making
- More physical insight in our downscaling (e.g., local controls, land-surface feedbacks, extreme events)
- Incorporation of downscaling in risk-based modelling frameworks to inform adaptations responses
- A downscaling community 'Wizard'

Warmer winters have helped the ring-necked parakeet to establish viable populations in southern England

Thanks!!!