

UPPSALA UNIVERSITET

Statistical downscaling of extreme indices of precipitation in Sweden and China

Fredrik Wetterhall, Air and Water Science, Uppsala University

András Bardossy, IWS Stuttgart University Deliang Chen, GVC Gothenburg University Sven Halldin, Air and Water Science, Uppsala University Chong-Yu Xu, Dept. of Geosciences, Oslo University

Workshop in Oslo 3 October 2005

Statistical methods

- Analogue methods
 - Principal Component Analysis (PCA) Teweles-Wobus Scores (TWS)
- Weather patterns Multi-objective fuzzy-rule-based
 - classification method (MOFRBC)
- Regression
 - Statistical Downscaling Model (SDSM)

UPPSALA UNIVERSITET

Validation variables from STARDEX

(<u>Sta</u>tistical and <u>R</u>egional dynamical <u>D</u>ownscaling of <u>Ex</u>tremes for European regions)

Key indices

- Amount precipitation on a wet day
- 90%-percentile of precipitation amounts on wet days
- Maximum 5 day precipitation
- Maximum length of dry period

Data

Predictors: Large-scale atmospheric variables, such as MSLP, GPH, geostrophic winds and humidity at different levels

The predictor data was from NCEP/NCAR reanalysed gridded time series

Predictands: Daily precipitation series from weather stations in Sweden and China

Calibration: 1961–1978, 1994–2000 Validation: 1979–1993

Study area 1

UPPSALA UNIVERSITET

Correlation MSLP-precipitation for Baixi

UPPSALA

UNIVERSITET

Correlation MSLP-precipitation for Baixi

Winter Summer Wet Dry Wet Dry 45[°] N Laoyukou 30[°] N 15[°] N Wet Dry Wet Dry 45[°] N Baixi 30[°] N 15[°] N Star Wet Wet Dry Dry 45[°] N Jouzhou 30[°] N 15[°] N 5 Mar. 100[°] E 120[°] E 100[°] E 120[°] E 100[°] E 120[°] E 100[°] E 120[°] E -2 -5 -3 -1 2 3 -4 0 1

CRPS for the Chinese areas

UPPSALA

UNIVERSITET

Intra-annual variation for China

UPPSALA

Weather patterns for Sweden

Precipitation on a wet day

UPPSALA UNIVERSITET

Maximum 5-day precipitation

UPPSALA UNIVERSITET

Intra-annual variation for NOPEX

UPPSALA UNIVERSITET

Conclusions

- Temporal and spatial analysis of the predictor-predictand relationship is crucial in downscaling
- Extreme events were well captured in different climates (Sweden and China)
- Winter indices better captured than summer indices in China
- Climate change signal carried in humidity in the HADAM3P model