An intercomparison of statistical and dynamical downscaling models for precipitation in the European Alps

Jürg Schmidli

Atmospheric and Climate Science ETH

Acknowledgments:

M. Haylock, Y. Hundecha, J. Ribalaygua, T. Schmith, STARDEX team

Workshop on statistical downscaling, Oslo

3-4 October 2005

The Downscaling Models

- LOCI benchmark
- 5 SDMs

(CCA, MLR, MAR, CWG, ANA)

• 3 RCMs

(CHRM, HadRM, HIRHAM)

Evaluation

- STARDEX indices
 (MEA, FRE, INT, Q90, XCDD, X1D, X5D, NL90)
- Independant period
- Reanalysis and HadAM3

The Predictand

- Precipitation on 0.5° grid (or STARDEX indices)
- 10–50 stations per grid-box

Regions

• Northern Alps, Ticino

Idea

- Use GCM simulated precipitation as a predictor (integrates all relevant large-scale predictors)
- Temporal variability is well simulated (even if spatial variability is not)
- Less prone to stationarity problems

Implementation

- Correct GCM bias in wet-day frequency and precipitation intensity
- Local corrections to the precipitation frequency distribution
- \Rightarrow Benchmark for other downscaling methods

References: Schmidli et al. 2005, Widmann et al. 2003

Wet-day Threshold P_{WDT}^m (mm per day)

Scaling Factor *s*

- frequency, slightly too low (mountains)
- intensity, factor 2–4 too low over mountains

Workshop on Statistical Downscaling, Oslo

LOCI: QQ-Plot — ERA40

LOCI: QQ-Plot — HadAM3P

Evaluation: Diagnostics

STARDEX indices

- MEA: Mean precipitation
- FRE: Wet-day frequency
- INT: Precipitation intensity
- Q90: 90% quantile of wet-day precipitation amounts
- XCDD: Maximum number of consecutive dry days
- . . .

Only two basic groups:

- Occurence process: FRE (MEA, XCDD, NL90)
- Intensity process: INT (Q90, X1D, X5D)

\Rightarrow Other indices are highly correlated with these two basic indices

Evaluation: Relative Bias (JJA)

HadAM3 1961-1990 / OBS 1966 - 1990

Wet-day Frequency (FRE)

Precipitation Intensity (INT)

Evaluation: Standard Deviation Ratio (JJA)

HadAM3 1961-1990 / OBS 1966 - 1990

Wet-day Frequency (FRE)

Precipitation Intensity (INT)

Correlation skill for precipitation intensity (INT), for individual GPs

 \Rightarrow Very large variability within region!

Correlation skill for precipitation intensity (INT), for individual GPs

\Rightarrow Very large variability within region! Between regions!

Correlation skill for precipitation intensity (INT), for individual GPs

 \Rightarrow And between seasons! Intercomparsion?

- LOCI: Current GCMs may have good skill, despite large biases
- Large variations between regions, seasons, and within regions!
- Alps: RCMs, "daily" SDMs
- FRE good proxy for occurence-related diagnostics (XCDD, MEA, ...)
- INT good proxy for intensity-related/extreme diagnostics (Q90, X1D, ...)

- \rightarrow Use LOCI as benchmark
- \rightarrow Evaluate pdf (e.g. mean, variance) at *local* scale
- → BUT: Evaluate temporal correspondance at *regional* scale
- \rightarrow Evaluate occurrence and intensity process (FRE and INT)
- → Spatial aggregation is essential for intercomparison (of methods, regions, and seasons)
- → Evaluate predictors! Perfect? Stationarity?
- → Data exchange infrastructure (e.g. OpenDAP/DODS)

Workshop on Statistical Downscaling, Oslo

Recommendations for Intercomparison

- B: Extremes: Are some indicators better/more robust? Methods?
 - \rightarrow include basic diagnostics (understanding)
 - \rightarrow stronger extremes may be more predictable
- E: Methods: General recommendations?
 - \rightarrow no method is always superior (but ...)
 - \rightarrow always use a range of methods
- F: Uncertainty associated with statistical downscaling?
 → spatial variability, predictability, sampling error
- H: SMIP: Basic principles/standard for comparison of models?
 → see previous slide

Estimation of the Correlation Coefficient

Dependance of Sampling Error on Sample Size

50% and 90% confidence interval for the correlation coefficient