

- Presentation of the system
 - What kind of reanalysis?
 - TOPAZ ensemble setup
 - Good health of an EnKF used in reanalysis?
- Performance of the 23-years reanalysis
 - Longest realistic EnKF run so far (1200 cycles)
 - Can the ice-ocean synthesis satisfy all data inputs?
 - How large are the expected dynamical imbalances?

- Sea level rise
- Heat and salinity budgets?
- Future evolutions

The TOPAZ system

- Exploited operationally at MET Norway
 - Since 2008
 - Ecosystem coupled online in Jan. 2012
- 23 years reanalysis at NERSC
 - Took 2 years to produce
 - ~ 4 million CPU hours
- 3-years ecosystem reanalysis
 - Assimilation of both physical and ocean colour data
- MyOcean (Arctic MFC)
 - 10-mems ensemble forecast
 - Free distribution of data (average)
 - Dynamical viewing (Godiva2)
- RT Data used by ECMWF wave forecast model
 - Surface currents

Layer: Met.no Thredds > Arctic Ocean Physics Analysis and Forecast,

Layer: Met.no Thredds > Arctic Ocean Biogeochemistry Analysis and Forecast, 12.5km daily mean (dataset-topaz4-bio-arc-myoceanv2-be) > gross_primary_productivity_of_carbon Units: ko m-2 s-1

Date/time: 24 Sep 2014 00:00:00 + UTC first frame last frame

1?	Sentember, 2014					
?	September, 2014					
	< Today					
Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30				
Select date						

www.mvocean.eu

Production Centres

Gmes Production Centres

Reanalysis strategy

- Short windows (1 week)
 - Easier to match observations and events
 - Closer to linear regime
 - <u>But</u> frequent discontinuities at assimilation times
 - How large? Integral effect?
- Filtering method (EnKF)
 - Information flows only forward.
 - Cheaper than smoothing / iterative methods
 - <u>But</u> less efficient for parameter estimation
 - Identical to the real-time forecasting system
- Inhomogeneous observations network (1991-2013)

Gmes

Implies inhomogeneous reanalysis results

The HYCOM model at NERSC

• 3D numerical ocean model

m Ocean

- Hybrid Coordinate Ocean model, HYCOM (U. Miami), 12 km grid
- Hybrid vertical coordinate
 - Isopycnal in the interior
 - Z-coordinate at the surface
 - TOPAZ4 uses 28 layers
- Hybrid coordinates in the Arctic
 - High stability of the Arctic water column
 - Sharp pycnocline
 - Less spurious diapycnal mixing (critical at high model resolution)

TOPAZ ensemble setup

- Initial error (2 months before the first assimilation cycle)
 - "Time warp" of members extracted from a 20-years free run
 - Sampled on the same season.
 - Meant to represent errors due to model spinup.
- Model errors

my Ocean

- Random perturbations of heat fluxes, winds, precipitation, clouds
- Horizontal correlation = 200 km
- Time correlation = 3 days
- Amplitude: 2m air temp = 3 deg C, radiative fluxes = 0.07 W/m²,
- Winds perturbed non-divergent (in geostrophic balance)
 - From SLP perturbation, 10 mBar amplitude
- Internal parameters of sea ice dynamics
- Constant bias detection for
 - SSH and SST offsets

Our preferred option

Comes Production Centres www.myocean.eu

Ice thickness (m)

TOPAZ domain and the locations of the sampling profiles

m√0cean

10

(ms

- 100 profiles • member #1 – from each location
- Red is the average over all the #1 mem. profiles
- The profile • ensemble limited by the local square region (100 km) on 5-July-2013

www.mvocean.eu

• Ensemble update

$$\psi_n^a = \psi_n^f + \mathbf{K}_n \left(\mathbf{d}_n - \mathbf{H} \psi_n^f \right)$$

• Factorize by ψ_n^f (Evensen 2003) $\psi_n^{a} = \psi_n^{f} \cdot T$

$$K_n = \psi_n^{f} \psi_n^{f} H^T.$$

$$(H \psi_n^{f} \psi_n^{f} H^T + R)^{-1}$$

EnKF Kalman gain:

T: Transform matrix (size 100 x 100)

- Advantages:
 - Solution lies within the ensemble subspace
 - Linear balances conserved
- Drawbacks:
 - Solution lies within the ensemble subspace
 - Non-linear balances "linearized" around ensemble mean

- DEnKF, asynchronous
 - 100 members
 - Local analysis (~90 km radius)
 - Ensemble inflation by 1% (mult.)
 - Bad idea in non-observed areas ...
- Observations (400.000):
 - Sea Level Anomalies (CLS)
 - SST (NOAA, then UK Met)
 - Sea Ice Concentr. (OSI-SAF)
 - Sea ice drift (CERSAT)
 - T/S profiles (Coriolis, IPY)

www.mvocean.eu

Impact on salinity

Production Centres

Why <u>dynamic</u> Data Assimilation in the Arctic? Example of ice-salinity correlations in the Barents Sea

Sakov et al., the TOPAZ4 system, OS 2012 Also see *Lisæter et al.* Oc. Dyn. 2003

m√0cean

Production Centres

Independent data: surface drifters

9 January 2008: SLA from TOPAZ reanalysis + drifters (± 4 days)

m√0cean

Arctic Mean Temperature Difference [°C] w.r.t. Initial Conditions

Arctic Mean Salinity Difference [PSU] w.r.t. Initial Conditions

Long-term Mean Velocity [m s⁻¹] at 15 m Depth

Period: 1991-2010

10

Model std of SSH in 2003-2008

Barents Sea Opening

Example 3-days end of March 2013

Ice drift seasonality shortcoming of the EVP rheology 10

Summary reanalysis performance

Gmes

- Good added value from observations
 - Sea ice extent

m√Ocean

- Sea surface temperature
- Surface circulation
- T&S Intermediate water masses (0-300 m depths)
- No improvement/degradation against the free run
 - Sea level seasonal signal
 - Deep waters
 - Sea ice drift velocities + seasonal cycle off (dynamics)
 - Seasonal cycle of ice thickness
 - Improved by mistake ...
- Degradations
 - Snow depths (mistake)
 - Too thin sea ice (consequence)

NEEDS HIGHER RESOLUTION (v+h)

CANNOT BE TUNED, NEEDS BASIC DEVELOPMENTS

www.myocean.eu