

Drift in the uppermost part of the ocean

Johannes Röhrs, Kai Christensen, and colleagues

08.09.15

Drifting buoys

· at 0m and 0.8m depth

Röhrs et al. 2012: Observation-based evaluation of surface wave effects on currents and trajectory forecasts Ocean Dynam., 62.

drifters vs. HF radar current

Difference between HF radar current and drifter speed vs. Stokes drift

Röhrs et al. 2015. Comparison of HF radar measurements with Eulerian and Lagrangian surface currents Ocean Dynam. 65.

O Meteorologisk institutt

more data, more comprehensive

drifter speed vs. wind speed

Significant correlation, but very low. Trajectories cannot be predicted from wind speed only

Meteorologisk

rotary spectra of drifter velocity

8

wind – drifter velocity ^{0.3} cross spectra 0.4

Coherence

indicates if the signals have a well-defined phase difference

Admittance measures how strong one signal forces the other

Phase differece

may be due to temporal or directional offset

Surface drift deflection angle

	surface (iSphere)	1m (CODE)	15m (SVP)
our study	60°	80°	
Niiler and Paduan 1995	60° (regression model)		70°
Rio and Hernandez 2003			20°-60°
Poulain et al 2009	17-20° (undrogued SVP)	28°	27°-42°
Gonella 1972	45-90° (analytical)		
Weber 1984	10-40° (analytical)		
Ekman 1905	45° (analytical)		

Drift

Velocity shear in the Ekman layer

Velocity shear in the Ekman layer

deflection angle in ROMS (k-omega mixing)

Adjoint sensitivity studies on surface currents?

- · Wind forcing
- How important is stratification and mixing to determine the direction?

Define an index J that describes surface currents, or Lagrangian surface transport

- total speed
- mesoscale eddy kinetic energy
- shoreward velocity
- deflection angle to wind?
- can we use Lagrangian quantities?

Cod egg transport through passages

Residence time of cod eggs in Vestfjorden

Meteorologisk institutt

Telefon55236611E-postjohannes.rohrs@met.no