An introduction to SPARSE

Keguang Wang Norwegian Meteorological Institute

SPARSE project information

- Developing and Advancing Seasonal Predictability of Arctic Sea Ice
- RCN's KLIMAFORSK project
- 01.10.2016 31.03.2020
- Progress report deadline: 1 October
- Final Report: 1 month after conclusion of project

Consortium of SPARSE

Norwegian Meteorological Institute

Agenda

Kickoff meeting

- Overview of the whole project
- Identify (and solve) challenges and risks of the project
- Supplement extra resources not well presented in the original proposal
- Enhence the collaboration of the consortium
- Practical information

Agenda

8 November, Tuesday, Room A0.007, VNN

11:00 Welcome/presentation of participants

- 11:10 Introduction to SPARSE, Keguang Wang
- 11:40 The coupled ROMS-CICE system preliminary results and some challenges, Nils Kristensen
- 12:00 ECMWF forecasting systems, Sarah Keeley
- 12:15 Utilizing seasonal forecasts as forcing in a sea ice prediction model, Jens Debemard

12:30 Lunch, Room A2.007

13:30 Testing Arctic sea ice predictability in NorESM, Jens Debernard

- 13:50 Available sea ice satellite data suitable for Arctic sea ice seasonal forecasting, Thomas Lavergne
- 14:20 Ice observations in the 7th Chinese National Arctic Research Expeditions 2016, Peng Lu

14:50 Coffee break

15:10 Discussion of field work and improving sea ice physical representation
15:40 Discussion of data assimilation
16:00 Discussion of challenges and risks
16:20 Update agenda for day 2
16:30 End of day 1

18:00 Ice breaker, Room A0.007

Contents

• SPARSE overview

Background
 Goals and objectives
 Work packages

- Tasks and deliverables
- □ Shedule and plan
- □ Risks and challenges

SPARSE management
Intranet and documentation
Issues list
Monthly status reporting
Budgeting

SPARSE project background

Importance of seasonal Arctic sea ice prediction

Physical systems classification

- Deterministic: laws of motion are known and orderly, so future can be directly determined from past
- stochastic/random: no laws of motion, we can only use probability to predict the location of parcels, we cannot predict future states of the system without statistics, only give probabilities
- chaotic: we know the laws of motion, but these systems exhibit "random" behavior due to nonlinear mechanisms. The future can only be predicted skillfully in a limited period

CHAOS: a simple system--Double Pendulum

- No periodic behavior
- Difficult or impossible to forecast
- Motion looks random
- Nonlinear
- Sensitive to initial conditions
 - double pendulum is choatic
 - □ initial speeds:
 - main arm: 400 deg/sec (left), 400.1 deg/sec
 - □ secondary arm: 0.0

Climate system as a huge chaotic system

- Chaotic climate system:
 - sensitive to initial conditions
 - sensitive to imperfect representation of the system
- Predictability:
 - the degree to which a correct prediction or forecast of a system's state can be made either qualitatively or quantitatively
 - □ different for different variables & models
- Practical value of seasonal forecasts

Meehl et al. (2009)

GCM "perfect-model" Arctic sea ice predictability

Tietsche et al.

Initialized GCM seasonal hindcast skill

Guemas et al.

Statistical analysis results

- Earlier main findings (Lindsay et al., 2008):
 - ice concentration is the most important variable for first two months
 - ocean temprature about 250 m is most important for longer lead times
 - for detrended data there is no skill for lead times of 3 months or more

Schröder et al. (2014)

Inspirations from Schröder et al.'s work

- A coupled ice-ocean model with melt ponds predictions is perhaps able to provide better seasonal prediction than a GCM without melt ponds description
- WP2: Regional ice-ocean model for seasonal Arctic sea ice prediction
- Analyzed ice concentration, melt ponds fraction and ocean temperature may provide an even better prediction than Schröder et al. (2014) prediction
- WP3: stastistical model for seasonal Arctic sea ice prediction and predictability

- A GCM with melt ponds fraction evolution such as NorESM may provide an even better prediction than those without
- WP4: NorESM Arctic sea ice prediction and predictability

Problem in Schröder et al. model results

Goal and objectives

- The overall goal of SPARSE is
 - □ To investigate whether more accurate initial information and model physics can improve the seasonal predictability of Arctic sea ice

• The objectives of SPARSE are

- □ To develop seasonal prediction systems for the Arctic sea ice
 - statistical model (WP3)
 - regional ROMS-CICE (WP2)
 - NorESM (WP4)
- □ To assess the predictability of these three systems
- $\hfill\square$ To advancing seasonal predictability for Arctic sea ice through
 - > data assimilation with more accurate and reliable information about the ocean and sea ice state (WP2, WP4)
 - physics refinement with particular emphasis on representation of snow melt and melt ponds, as well as radiation scheme improvement (WP1, WP2, WP3, WP4)

Work packages:

• WP1: Field observations and analysis

• WP3: Statistical model development and predictability

 WP2: ROMS-CICE seasonal forecast system development and predicability

- WP4: NorESM seasonal forecast and predicability
- WP5: Satellite data preparation

WP1 tasks and deliverables

• Tasks

- Reanalysis of albedo and IMB data
- Obervation of snow melt and melt ponds
- Parameterization of sea ice processes and albedo
- Implementation of improved sea ice parameterization into CICE
- Buy two IMBs

• Deliverables

- Field work report 2017, due 30 June, 2017
- Manuscript #1 submission: Early snow melting and melt pond formation on Arctic sea ice, 31 Dec. 2017
- Sea ice new snow melt and melt ponds parameterization report for implementation in CICE, 31 March 2018
- Field work report 2018, due 30 June 2018
- Sea ice radiation parameterization report for implementation in CICE, 31 Dec 2018
- Manuscript #2 Submission: Impact of new sea ice albedo parameterization on the simulation of melt pond fraction in a coupled ice-ocean model, 31 June 2019 (?)

WP2 tasks and deliverables

• Tasks:

- Setup of ROMS-CICE seasonal forecasting system
- Development of data assimilation system for ROMS-CICE system
- Improving ROMS-CICE interface to use challenging atmospheric forcing products
- Reconstruction of Arctic climate with improved sea ice parameterization
- Seasonal forecast and predictability assessment

• Deliverables:

- Report ROMS-CICE coupling, 31 Mar 2017
- Report on Arctic sea ice climate simulation with ROMS-CICE, 30 June 2017
- Report on improving ROMS-CICE interface to use challenging atmospheric forcing, 30 June 2017
- Report on data assimilation for ROMS-CICE system, 30 Sept. 2017
- Manuscript #3 submssion: Effect of data assimilation on the seasonal predictability of Arctic sea ice, 30 Sept 2019

WP3 tasks and deliverables

• Tasks:

- Statistical analysis of the ROMS-CICE climate reconstruction
- □ Statistical model development
- Statistical seasonal forecast and assessment of predictability

• Deliverables:

- Report on statistical analysis of the September sea ice minimun extent with ROMS-CICE climate, 31 Dec. 2017
- Report on statiscal model, 31 March 2018
- Manuscript #5 submission: Seasonal prediction of September Arctic sea ice extent by melt pond fraction and deep water temperature, 30 Sept. 2019

WP4 tasks and deliverables

• Tasks:

- Setup of NorESM for seasonal "perfect-model" experiments
- Assessment of seasonal predictability for a "perfectmodel' perspective
- Assessment of seasonal predictability of NorESM with data assimilation
- Assessment of seasonal predictability of NorESM with sea ice physics improvement

• Deliverables:

- Report on NorESM perfect-model experiment, 31 Dec 2017
- Manuscript #4 submission: Seasonal Arctic sea ice predictability in the NorESM, 30 June 2018
- Report of the Effect of data assimilation on NorESM seasonal predictability, 31 March 2019
- Manuscript #6 submission: The impact of improved sea ice initialization on the seasonal prediction of Arctic sea ice, 31 Dec. 2019

package collaboration

SPARSE management

- SPARSE management
 - □ Intranet and documentation
 - □ Issues list
 - □ Monthly status reporting
 - Budgeting

Budget (in NOK 1000):

- Source:
 - ➢ RCN: 9,852
 - ➢ MET: 2,919
 - ▶ NPI: 1,258
 - ➢ BAS: 100

- Cost:
 - MET: 9,141
 NPI: 4,888
 BAS: 100

• Total: 14,129

• Total: 14,129

Contents

• SPARSE overview

Background
 Goals and objectives
 Work packages

- Tasks and deliverables
- □ Shedule and plan
- □ Risks and challenges

SPARSE management
Intranet and documentation
Issues list
Monthly status reporting
Budgeting

Questions and comments?

Task/funding distribution

Task no.	Task and deliverable	time	KW	JD	NK	ΤL	MET	NPI
1.1	Reanalysis of observational data	04.16						0+2
2.1	Setup ROMS-CICE & climate reconstruction	04.16-01.17	1+2		3	1	5+2	
2.3	ROMS-CICE forcing improvement	04.16-01.17		5			5	
2.2	ROMS-CICE assimilation & climate reconstruction	01.17-02.17	1+3		2	2	5+3	
1.2	Field work	02.17-03.17	1				1	1+2
1.1	Reanalysis of observational data	03.17						2
	Manuscript #1 preparation and submission	03.17-04.17						2
3.1	Statistical analysis of ROMS-CICE climate reconstruction	03.17-04.17	0+3				0+3	
4.1	Setup NorESM perfect model experiment	04.17		2			2	
1.1	Reanalysis of observational data	01.18						2
3.2	Statistical model development	01.18-02.18	1+3				1+3	2
4.2	Assess of perfect model NorESM predictability	01.18-02.18	0+1	2		1	3+1	
	Manuscript #4 preparation & submission	01.18-03.18						
1.3	Sea ice parameterization	02.18-03.18						4
1.2	Field work	02.18-03.18	1				1	2+2
	Manuscript #2 preparation and submission	03.18-04.18						
4.3	NorESM predictability with data assimilation	03.18-04.18	0+2	3		1	4+2	
	Manuscript #6 preparation & submission							
1.4	Implement new ice parameterization in CICE	03.18-01.19	0+1	2	1		3+1	4+2
2.4	Reconstruction Arctic climate with new ice parameterization	01.19-02.19	0+2		1		0+2	2
3.3	Assess statistical forecast & predictability	01.19-03.19	1+3				1+3	3
	Manuscript #5 preparation & submission							
2.5	Assess ROMS-CICE forecast & predictability	01.19-03.19	1+3		1	1	3+3	3
	Manuscript #3 preparation & submission	02.19-03.19						
4.4	NorESM predictability with new ice parameterization	02.19-04.19		5			5	2
	Manuscript #7 preparation & submission	04.19-01.20						3+2
	Final report	01.20	0+2				0+2	
2016			1+2	2	2	1	6+2	0+2
2017			2+6	5	3	2	12+6	5+2
2018			2+7	5	1	2	10+7	12+2
2019			2+8	7	2	1	12+8	12+2

Project teams and collabrations Field observation and analysis ROMS-CICE modeling Statistical analysis and modeling NorESM modeling

inter-team collaborations