|
  |   |
ESD scenariosIntroductionThe maps show trends in annual mean temperature and precipitation, derived from many
different global climate model simulations carried out for the next IPCC report
(Assessment Report 4). The simulations used here follow the SRES A1b emission scenario.
The empirical downscaling has been carried out for single locations, but a geographical
regression model has been used for spatial interpolation, together with a Kriging analysis
for the residuals. The maps showing an analysis for extreme precipitation (percentiles) are partly based on the results above and partly on statistical relationship betwee the distribution of 24-hour (wet-day) precipitation ('probability density function', 'pdf') and the mean local temperature and precipitation (similar analysis was performed for the number of wet days), as well as geographical parametres. This analysis is described in more detail in Benestad, R.E. (2006). DatasetsThe files presented here are netCDF (http://ftp.unidata.ucar.edu/software/netcdf/) files containing the results of Empirical-Statistical Downscaling that have been gridded for Northern Europe:
Sample plots: References
NetCDF extractA brief explanation of the netCDF-files content: netcdf Europe_E-SDS_DailyPrecipDistrParam { dimensions: lon = 540 ; lat = 276 ; variables: double lon(lon) ; lon:units = "degrees_east" ; double lat(lat) ; lat:units = "degrees_north" ; float q95(lat, lon) ; - Present day q95:units = "mm/day" ; q95:missing_value = -999.f ; q95:scale_factor = 0.01 ; float q95x(lat, lon) ; - Projection for 2050 q95x:units = "mm/day" ; q95x:missing_value = -999.f ; q95x:scale_factor = 0.01 ; float q95Error(lat, lon) ; q95Error:units = "mm/day" ; q95Error:missing_value = -999.f ; q95Error:scale_factor = 0.01 ; float q95xError(lat, lon) ; q95xError:units = "mm/day" ; q95xError:missing_value = -999.f ; q95xError:scale_factor = 0.01 ; float slope(lat, lon) ; - slope parameter 'm' for present day slope:units = "mm/day" ; slope:missing_value = -999.f ; slope:scale_factor = 0.01 ; float slopeX(lat, lon) ; - slope parameter 'm' for 2050 slopeX:units = "mm/day" ; slopeX:missing_value = -999.f ; slopeX:scale_factor = 0.01 ; float slopeError(lat, lon) ; slopeError:units = "mm/day" ; slopeError:missing_value = -999.f ; slopeError:scale_factor = 0.01 ; float N(lat, lon) ; - Number of wet days per year for present day N:units = "days/year" ; N:missing_value = -999.f ; N:scale_factor = 0.01 ; float Nx(lat, lon) ; - Number of wet days per year for 2005 Nx:units = "days/year" ; Nx:missing_value = -999.f ; Nx:scale_factor = 0.01 ; float Pr95(lat, lon) ; - Pr(P > q95[present]) for 2005 Pr95:units = "%" ; Pr95:missing_value = -999.f ; Pr95:scale_factor = 0.01 ; float q95_glm(lat, lon) ; - Present day, based on GLM q95_glm:units = "%" ; q95_glm:missing_value = -999.f ; q95_glm:scale_factor = 0.01 ; float q95x_glm(lat, lon) ; - Projection for 2050, based on GLM q95x_glm:units = "%" ; q95x_glm:missing_value = -999.f ; q95x_glm:scale_factor = 0.01 ; float Pr95_glm(lat, lon) ; - Pr(P > q95[present]) for 2005, based on GLM Pr95_glm:units = "%" ; Pr95_glm:missing_value = -999.f ; Pr95_glm:scale_factor = 0.01 ; netcdf Europe_E-SDS_t2m-mean_map { dimensions: lon = 540 ; lat = 276 ; variables: double lon(lon) ; lon:units = "degrees_east" ; double lat(lat) ; lat:units = "degrees_north" ; float dTdt(lat, lon) ; - Name and unit should be "T2m" and "deg C" dTdt:units = "deg C/decade" ; dTdt:missing_value = -999.f ; dTdt:scale_factor = 0.01 ; |
||||||
Send comments to webmaster |